Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378528357> ?p ?o ?g. }
- W4378528357 endingPage "2035" @default.
- W4378528357 startingPage "2035" @default.
- W4378528357 abstract "Globally, floods are a prevalent type of natural disaster. Simulating floods is a critical component in the successful implementation of flood management and mitigation strategies within a river basin or catchment area. Selecting appropriate calibration data to establish a reliable hydrological model is of great importance for flood simulation. Usually, hydrologists select the number of flood events used for calibration depending on the catchment size. Currently, there is no numerical index to help hydrologists quantitatively select flood events for calibrating the hydrological models. The question is, what is the necessary and sufficient amount (e.g., 10 events) of calibration flood events that must be selected? This study analyses the spectral characteristics of flood data in Sequences before model calibration. The absolute best set of calibration data is selected using an entropy-like function called the information cost function (ICF), which is calculated from the discrete wavelet transform (DWT) decomposition results. Given that the validation flood events have already been identified, we presume that the greater the similarity between the calibration dataset and the validation dataset, the higher the performance of the hydrological model should be after calibration. The calibration datasets for the Tunxi catchment in southeast China were derived from 21 hourly flood events, and the calibration datasets were generated by arranging 14 flood events in sequences from 3 to 14 (i.e., a Sequence of 3 with 12 sets (set 1 = flood events 1, 2, 3; set 2 = flood events 2, 3, 4, …, and so on)), resulting in a total of 12 sequences and 78 sets. With a predetermined validation set of 7 flood events and the hydrological model chosen as the Hydrologic Engineering Center (HEC–HMS) model, the absolute best calibration flood set was selected. The best set from the Sequence of 10 (set 4 = S10′) was found to be the absolute best calibration set of flood events. The potential of the percentile energy entropy was also analyzed for the best calibration sets, but the ICF was the most consistent index to reveal the ranking based on similarity with model performance. The proposed ICF index in this study is helpful for hydrologists to use data efficiently with more hydrological data obtained in the new era of big data. This study also demonstrates the possibility of improving the effectiveness of utilizing calibration data, particularly in catchments with limited data." @default.
- W4378528357 created "2023-05-28" @default.
- W4378528357 creator A5025781110 @default.
- W4378528357 creator A5057117256 @default.
- W4378528357 creator A5057724465 @default.
- W4378528357 creator A5092032785 @default.
- W4378528357 creator A5092032786 @default.
- W4378528357 date "2023-05-27" @default.
- W4378528357 modified "2023-09-30" @default.
- W4378528357 title "Wavelet Analysis and the Information Cost Function Index for Selection of Calibration Events for Flood Simulation" @default.
- W4378528357 cites W1921348063 @default.
- W4378528357 cites W1965372365 @default.
- W4378528357 cites W1969861235 @default.
- W4378528357 cites W1971682044 @default.
- W4378528357 cites W1981751431 @default.
- W4378528357 cites W1983908719 @default.
- W4378528357 cites W1988387558 @default.
- W4378528357 cites W1989541453 @default.
- W4378528357 cites W1996021349 @default.
- W4378528357 cites W2006239984 @default.
- W4378528357 cites W2006599158 @default.
- W4378528357 cites W2008987546 @default.
- W4378528357 cites W2015887535 @default.
- W4378528357 cites W2017370859 @default.
- W4378528357 cites W2023677451 @default.
- W4378528357 cites W2033904036 @default.
- W4378528357 cites W2050952224 @default.
- W4378528357 cites W2059822148 @default.
- W4378528357 cites W2064251712 @default.
- W4378528357 cites W2073633517 @default.
- W4378528357 cites W2075920507 @default.
- W4378528357 cites W2078276613 @default.
- W4378528357 cites W2079801505 @default.
- W4378528357 cites W2082100660 @default.
- W4378528357 cites W2096972703 @default.
- W4378528357 cites W2111552444 @default.
- W4378528357 cites W2118533364 @default.
- W4378528357 cites W2132984323 @default.
- W4378528357 cites W2133166811 @default.
- W4378528357 cites W2166337977 @default.
- W4378528357 cites W2166798163 @default.
- W4378528357 cites W2516840633 @default.
- W4378528357 cites W2591272380 @default.
- W4378528357 cites W2806989733 @default.
- W4378528357 cites W2911194247 @default.
- W4378528357 cites W3003013462 @default.
- W4378528357 cites W3015288810 @default.
- W4378528357 cites W3018632304 @default.
- W4378528357 cites W3029414076 @default.
- W4378528357 cites W3080957523 @default.
- W4378528357 cites W3118828808 @default.
- W4378528357 cites W3126673397 @default.
- W4378528357 cites W3184279401 @default.
- W4378528357 cites W3189661600 @default.
- W4378528357 cites W3213411683 @default.
- W4378528357 cites W4200217908 @default.
- W4378528357 cites W4211117750 @default.
- W4378528357 cites W4214707208 @default.
- W4378528357 cites W4226116606 @default.
- W4378528357 cites W4295969991 @default.
- W4378528357 cites W4297348601 @default.
- W4378528357 cites W4307322376 @default.
- W4378528357 cites W4307516694 @default.
- W4378528357 cites W4310356787 @default.
- W4378528357 cites W4327974190 @default.
- W4378528357 cites W4366594050 @default.
- W4378528357 cites W4376871838 @default.
- W4378528357 doi "https://doi.org/10.3390/w15112035" @default.
- W4378528357 hasPublicationYear "2023" @default.
- W4378528357 type Work @default.
- W4378528357 citedByCount "0" @default.
- W4378528357 crossrefType "journal-article" @default.
- W4378528357 hasAuthorship W4378528357A5025781110 @default.
- W4378528357 hasAuthorship W4378528357A5057117256 @default.
- W4378528357 hasAuthorship W4378528357A5057724465 @default.
- W4378528357 hasAuthorship W4378528357A5092032785 @default.
- W4378528357 hasAuthorship W4378528357A5092032786 @default.
- W4378528357 hasBestOaLocation W43785283571 @default.
- W4378528357 hasConcept C105795698 @default.
- W4378528357 hasConcept C124101348 @default.
- W4378528357 hasConcept C127313418 @default.
- W4378528357 hasConcept C154945302 @default.
- W4378528357 hasConcept C165838908 @default.
- W4378528357 hasConcept C166957645 @default.
- W4378528357 hasConcept C171878848 @default.
- W4378528357 hasConcept C177264268 @default.
- W4378528357 hasConcept C183195422 @default.
- W4378528357 hasConcept C187320778 @default.
- W4378528357 hasConcept C199360897 @default.
- W4378528357 hasConcept C205649164 @default.
- W4378528357 hasConcept C33923547 @default.
- W4378528357 hasConcept C39432304 @default.
- W4378528357 hasConcept C41008148 @default.
- W4378528357 hasConcept C47432892 @default.
- W4378528357 hasConcept C62649853 @default.
- W4378528357 hasConcept C74256435 @default.
- W4378528357 hasConcept C76886044 @default.
- W4378528357 hasConceptScore W4378528357C105795698 @default.