Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378528446> ?p ?o ?g. }
- W4378528446 endingPage "1862" @default.
- W4378528446 startingPage "1862" @default.
- W4378528446 abstract "In coronary computed tomography angiography (CCTA), the main issue of image quality is noise in obese patients, blooming artifacts due to calcium and stents, high-risk coronary plaques, and radiation exposure to patients.To compare the CCTA image quality of deep learning-based reconstruction (DLR) with that of filtered back projection (FBP) and iterative reconstruction (IR).This was a phantom study of 90 patients who underwent CCTA. CCTA images were acquired using FBP, IR, and DLR. In the phantom study, the aortic root and the left main coronary artery in the chest phantom were simulated using a needleless syringe. The patients were classified into three groups according to their body mass index. Noise, the signal-to-noise ratio (SNR), and the contrast-to-noise ratio (CNR) were measured for image quantification. A subjective analysis was also performed for FBP, IR, and DLR.According to the phantom study, DLR reduced noise by 59.8% compared to FBP and increased SNR and CNR by 121.4% and 123.6%, respectively. In a patient study, DLR reduced noise compared to FBP and IR. Furthermore, DLR increased the SNR and CNR more than FBP and IR. In terms of subjective scores, DLR was higher than FBP and IR.In both phantom and patient studies, DLR effectively reduced image noise and improved SNR and CNR. Therefore, the DLR may be useful for CCTA examinations." @default.
- W4378528446 created "2023-05-28" @default.
- W4378528446 creator A5005840610 @default.
- W4378528446 creator A5030468439 @default.
- W4378528446 creator A5061164971 @default.
- W4378528446 creator A5062030290 @default.
- W4378528446 creator A5068085972 @default.
- W4378528446 creator A5069642038 @default.
- W4378528446 creator A5070127266 @default.
- W4378528446 creator A5075169530 @default.
- W4378528446 creator A5087609795 @default.
- W4378528446 creator A5091738838 @default.
- W4378528446 date "2023-05-26" @default.
- W4378528446 modified "2023-10-18" @default.
- W4378528446 title "Assessment of Image Quality of Coronary CT Angiography Using Deep Learning-Based CT Reconstruction: Phantom and Patient Studies" @default.
- W4378528446 cites W1260204519 @default.
- W4378528446 cites W1993666533 @default.
- W4378528446 cites W2010587287 @default.
- W4378528446 cites W2053746810 @default.
- W4378528446 cites W2095394713 @default.
- W4378528446 cites W2111274157 @default.
- W4378528446 cites W2129873188 @default.
- W4378528446 cites W2145828542 @default.
- W4378528446 cites W2327216876 @default.
- W4378528446 cites W2768252195 @default.
- W4378528446 cites W2891555219 @default.
- W4378528446 cites W2915142973 @default.
- W4378528446 cites W2937456081 @default.
- W4378528446 cites W2938624221 @default.
- W4378528446 cites W2945605728 @default.
- W4378528446 cites W2948557910 @default.
- W4378528446 cites W3006526713 @default.
- W4378528446 cites W3041232887 @default.
- W4378528446 cites W3045884753 @default.
- W4378528446 cites W3092674630 @default.
- W4378528446 cites W3098281398 @default.
- W4378528446 cites W3099029995 @default.
- W4378528446 cites W3134609979 @default.
- W4378528446 cites W3201992381 @default.
- W4378528446 cites W3214788147 @default.
- W4378528446 cites W3216623900 @default.
- W4378528446 cites W4210430754 @default.
- W4378528446 cites W4302275539 @default.
- W4378528446 doi "https://doi.org/10.3390/diagnostics13111862" @default.
- W4378528446 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37296714" @default.
- W4378528446 hasPublicationYear "2023" @default.
- W4378528446 type Work @default.
- W4378528446 citedByCount "0" @default.
- W4378528446 crossrefType "journal-article" @default.
- W4378528446 hasAuthorship W4378528446A5005840610 @default.
- W4378528446 hasAuthorship W4378528446A5030468439 @default.
- W4378528446 hasAuthorship W4378528446A5061164971 @default.
- W4378528446 hasAuthorship W4378528446A5062030290 @default.
- W4378528446 hasAuthorship W4378528446A5068085972 @default.
- W4378528446 hasAuthorship W4378528446A5069642038 @default.
- W4378528446 hasAuthorship W4378528446A5070127266 @default.
- W4378528446 hasAuthorship W4378528446A5075169530 @default.
- W4378528446 hasAuthorship W4378528446A5087609795 @default.
- W4378528446 hasAuthorship W4378528446A5091738838 @default.
- W4378528446 hasBestOaLocation W43785284461 @default.
- W4378528446 hasConcept C104293457 @default.
- W4378528446 hasConcept C115961682 @default.
- W4378528446 hasConcept C126838900 @default.
- W4378528446 hasConcept C141379421 @default.
- W4378528446 hasConcept C154945302 @default.
- W4378528446 hasConcept C2780643987 @default.
- W4378528446 hasConcept C2781347138 @default.
- W4378528446 hasConcept C2989005 @default.
- W4378528446 hasConcept C35772409 @default.
- W4378528446 hasConcept C41008148 @default.
- W4378528446 hasConcept C55020928 @default.
- W4378528446 hasConcept C71924100 @default.
- W4378528446 hasConcept C99498987 @default.
- W4378528446 hasConceptScore W4378528446C104293457 @default.
- W4378528446 hasConceptScore W4378528446C115961682 @default.
- W4378528446 hasConceptScore W4378528446C126838900 @default.
- W4378528446 hasConceptScore W4378528446C141379421 @default.
- W4378528446 hasConceptScore W4378528446C154945302 @default.
- W4378528446 hasConceptScore W4378528446C2780643987 @default.
- W4378528446 hasConceptScore W4378528446C2781347138 @default.
- W4378528446 hasConceptScore W4378528446C2989005 @default.
- W4378528446 hasConceptScore W4378528446C35772409 @default.
- W4378528446 hasConceptScore W4378528446C41008148 @default.
- W4378528446 hasConceptScore W4378528446C55020928 @default.
- W4378528446 hasConceptScore W4378528446C71924100 @default.
- W4378528446 hasConceptScore W4378528446C99498987 @default.
- W4378528446 hasIssue "11" @default.
- W4378528446 hasLocation W43785284461 @default.
- W4378528446 hasLocation W43785284462 @default.
- W4378528446 hasLocation W43785284463 @default.
- W4378528446 hasOpenAccess W4378528446 @default.
- W4378528446 hasPrimaryLocation W43785284461 @default.
- W4378528446 hasRelatedWork W2011797925 @default.
- W4378528446 hasRelatedWork W2058254206 @default.
- W4378528446 hasRelatedWork W2105162923 @default.
- W4378528446 hasRelatedWork W2144778520 @default.
- W4378528446 hasRelatedWork W2215132873 @default.
- W4378528446 hasRelatedWork W2291745687 @default.