Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378530520> ?p ?o ?g. }
- W4378530520 endingPage "1157" @default.
- W4378530520 startingPage "1137" @default.
- W4378530520 abstract "Abstract In today’s modern era of big data, computationally efficient and scalable methods are needed to support timely insights and informed decision making. One such method is subsampling, where a subset of the big data is analysed and used as the basis for inference rather than considering the whole data set. A key question when applying subsampling approaches is how to select an informative subset based on the questions being asked of the data. A recent approach for this has been proposed based on determining subsampling probabilities for each data point, but a limitation of this approach is that the appropriate subsampling probabilities rely on an assumed model for the big data. In this article, to overcome this limitation, we propose a model robust approach where a set of models is considered, and the subsampling probabilities are evaluated based on the weighted average of probabilities that would be obtained if each model was considered singularly. Theoretical results are derived to inform such an approach. Our model robust subsampling approach is applied in a simulation study and in two real-world applications where performance is compared to current subsampling practices. The results show that our model robust approach outperforms alternative methods." @default.
- W4378530520 created "2023-05-28" @default.
- W4378530520 creator A5007099378 @default.
- W4378530520 creator A5024916657 @default.
- W4378530520 creator A5038664056 @default.
- W4378530520 date "2023-05-27" @default.
- W4378530520 modified "2023-09-25" @default.
- W4378530520 title "A model robust subsampling approach for Generalised Linear Models in big data settings" @default.
- W4378530520 cites W1970598633 @default.
- W4378530520 cites W1999036265 @default.
- W4378530520 cites W2038336950 @default.
- W4378530520 cites W2042550916 @default.
- W4378530520 cites W2051685933 @default.
- W4378530520 cites W2056594234 @default.
- W4378530520 cites W2082748942 @default.
- W4378530520 cites W2142635246 @default.
- W4378530520 cites W2146774335 @default.
- W4378530520 cites W2166163519 @default.
- W4378530520 cites W2168175751 @default.
- W4378530520 cites W2180681258 @default.
- W4378530520 cites W2320865122 @default.
- W4378530520 cites W2480327167 @default.
- W4378530520 cites W2529205007 @default.
- W4378530520 cites W2548522478 @default.
- W4378530520 cites W2592576905 @default.
- W4378530520 cites W2754587098 @default.
- W4378530520 cites W2801490189 @default.
- W4378530520 cites W2806487644 @default.
- W4378530520 cites W2904739162 @default.
- W4378530520 cites W2963200104 @default.
- W4378530520 cites W3000459084 @default.
- W4378530520 cites W3011930677 @default.
- W4378530520 cites W3032084519 @default.
- W4378530520 cites W3037232215 @default.
- W4378530520 cites W3043888703 @default.
- W4378530520 cites W3045595564 @default.
- W4378530520 cites W3046569217 @default.
- W4378530520 cites W3097162844 @default.
- W4378530520 cites W3098603383 @default.
- W4378530520 cites W3099924168 @default.
- W4378530520 cites W3101489592 @default.
- W4378530520 cites W3103508235 @default.
- W4378530520 cites W3106344352 @default.
- W4378530520 cites W3125091169 @default.
- W4378530520 cites W3126179019 @default.
- W4378530520 cites W3133772580 @default.
- W4378530520 cites W3133918512 @default.
- W4378530520 cites W3210246363 @default.
- W4378530520 cites W4214812430 @default.
- W4378530520 cites W4311035404 @default.
- W4378530520 doi "https://doi.org/10.1007/s00362-023-01446-9" @default.
- W4378530520 hasPublicationYear "2023" @default.
- W4378530520 type Work @default.
- W4378530520 citedByCount "0" @default.
- W4378530520 crossrefType "journal-article" @default.
- W4378530520 hasAuthorship W4378530520A5007099378 @default.
- W4378530520 hasAuthorship W4378530520A5024916657 @default.
- W4378530520 hasAuthorship W4378530520A5038664056 @default.
- W4378530520 hasBestOaLocation W43785305201 @default.
- W4378530520 hasConcept C119857082 @default.
- W4378530520 hasConcept C124101348 @default.
- W4378530520 hasConcept C12426560 @default.
- W4378530520 hasConcept C154945302 @default.
- W4378530520 hasConcept C177264268 @default.
- W4378530520 hasConcept C199360897 @default.
- W4378530520 hasConcept C2524010 @default.
- W4378530520 hasConcept C26517878 @default.
- W4378530520 hasConcept C2776214188 @default.
- W4378530520 hasConcept C28719098 @default.
- W4378530520 hasConcept C33923547 @default.
- W4378530520 hasConcept C38652104 @default.
- W4378530520 hasConcept C41008148 @default.
- W4378530520 hasConcept C48044578 @default.
- W4378530520 hasConcept C58489278 @default.
- W4378530520 hasConcept C75684735 @default.
- W4378530520 hasConcept C77088390 @default.
- W4378530520 hasConceptScore W4378530520C119857082 @default.
- W4378530520 hasConceptScore W4378530520C124101348 @default.
- W4378530520 hasConceptScore W4378530520C12426560 @default.
- W4378530520 hasConceptScore W4378530520C154945302 @default.
- W4378530520 hasConceptScore W4378530520C177264268 @default.
- W4378530520 hasConceptScore W4378530520C199360897 @default.
- W4378530520 hasConceptScore W4378530520C2524010 @default.
- W4378530520 hasConceptScore W4378530520C26517878 @default.
- W4378530520 hasConceptScore W4378530520C2776214188 @default.
- W4378530520 hasConceptScore W4378530520C28719098 @default.
- W4378530520 hasConceptScore W4378530520C33923547 @default.
- W4378530520 hasConceptScore W4378530520C38652104 @default.
- W4378530520 hasConceptScore W4378530520C41008148 @default.
- W4378530520 hasConceptScore W4378530520C48044578 @default.
- W4378530520 hasConceptScore W4378530520C58489278 @default.
- W4378530520 hasConceptScore W4378530520C75684735 @default.
- W4378530520 hasConceptScore W4378530520C77088390 @default.
- W4378530520 hasFunder F4320320983 @default.
- W4378530520 hasIssue "4" @default.
- W4378530520 hasLocation W43785305201 @default.
- W4378530520 hasLocation W43785305202 @default.
- W4378530520 hasOpenAccess W4378530520 @default.