Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378549275> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4378549275 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> The multi-scheme chemical ionisation inlet 1 (MION1) allows fast switching between measuring atmospheric ions without chemical ionisation and neutral molecules by multiple chemical ionisation methods. In this study, the upgraded multi-scheme chemical ionisation inlet 2 (MION2) is presented. The new design features improved ion optics that increase the reagent ion concentration, a generally more robust operation and the possibility to run multiple chemical ionisation methods with the same ionisation time. To simplify the regular calibration of MION2, we developed an open-source flow reactor chemistry model (MARFORCE) to quantify the chemical production of sulfuric acid (H<sub>2</sub>SO<sub>4</sub>), hypoiodous acid (HOI) and hydroperoxyl radical (HO<sub>2</sub>). MARFORCE simulates convection-diffusion-reaction processes inside typical cylindrical flow reactors with uniform inner diameters. The model also provides options to simulate the chemical processes 1) when two flow reactors with different inner diameters are connected together and 2) when two flows are merged into one (connected by a Y-shape tee), but with reduced accuracy. Additionally, the chemical mechanism files in the model are compatible with the widely-used Master Chemical Mechanism, thus allowing future adaptation to simulate other chemical processes in flow reactors. We further carried out detailed characterisation of the bromide (Br<sup>−</sup>) and nitrate (NO<sub>3</sub><sup>−</sup>) chemical ionisation methods with different ionisation times. We calibrated H<sub>2</sub>SO<sub>4</sub>, HOI and HO<sub>2</sub> by combining gas kinetic experiments with the MARFORCE model. Sulfur dioxide (SO<sub>2</sub>), water (H<sub>2</sub>O) and molecular iodine (I<sub>2</sub>) were evaluated using dilution experiments from a gas cylinder (SO<sub>2</sub>), dew point mirror measurements (H<sub>2</sub>O), and a derivatization approach in combination with high-performance liquid chromatography quantification (I<sub>2</sub>), respectively. We find that the detection limit is negatively correlated with the fragmentation enthalpy of the analyte-reagent ion (Br<sup>−</sup>) cluster, i.e., a stronger binding (larger fragmentation enthalpy) leads to a lower detection limit. Additionally, a moderately longer reaction time enhances the detection sensitivity thus decreasing the detection limit. For example, the detection limit for H<sub>2</sub>SO<sub>4</sub> is estimated to be 2.9 × 10<sup>4</sup> molec. cm<sup>−3</sup> with a 300 ms ionisation time. A direct comparison suggests that this is even better than the widely-used Eisele-type chemical ionisation inlet. While the NO<sub>3</sub><sup>−</sup> chemical ionisation method is generally more robust, we find that the Br<sup>−</sup> chemical ionisation method (Br<sup>−</sup>-MION2) is significantly affected by air water content. Higher air water content results in lower sensitivity for HO<sub>2</sub> and SO<sub>2</sub> within the examined conditions. On the other hand, a steep sensitivity drop of H<sub>2</sub>SO<sub>4</sub>, HOI and I<sub>2</sub> is only observed when the dew point is greater than 0.5–10.5 â (equivalent to 20–40 % RH; calculated at 25 â hereafter). Future studies utilising atmospheric pressure Br<sup>−</sup> chemical ionisation method, including Br<sup>−</sup>-MION2, should carefully address the humidity effect on a molecular basis. By combining methods such as water-insensitive NO<sub>3</sub><sup>−</sup>-MION2 with Br<sup>−</sup>-MION2, MION2 should be able to provide greater details of air composition than either of these methods alone. Combining instrument voltage-scanning, chemical kinetic experiments and quantum chemical calculations, we find that the HIO<sub>3</sub> detection is not interfered with by iodine oxides under atmospherically relevant conditions. The IO<sub>3</sub><sup>−</sup>, HIO<sub>3</sub>NO<sub>3</sub><sup>−</sup> and HIO<sub>3</sub>Br<sup>−</sup> ions measured using the Br<sup>−</sup> and NO<sub>3</sub><sup>−</sup><sub> </sub>chemical ionisation methods are primarily, if not exclusively, produced from gaseous HIO<sub>3</sub> molecules." @default.
- W4378549275 created "2023-05-28" @default.
- W4378549275 creator A5043129752 @default.
- W4378549275 date "2023-05-27" @default.
- W4378549275 modified "2023-10-10" @default.
- W4378549275 title "Reply on RC1" @default.
- W4378549275 doi "https://doi.org/10.5194/amt-2023-30-ac1" @default.
- W4378549275 hasPublicationYear "2023" @default.
- W4378549275 type Work @default.
- W4378549275 citedByCount "0" @default.
- W4378549275 crossrefType "peer-review" @default.
- W4378549275 hasAuthorship W4378549275A5043129752 @default.
- W4378549275 hasBestOaLocation W43785492751 @default.
- W4378549275 hasConcept C108213311 @default.
- W4378549275 hasConcept C113196181 @default.
- W4378549275 hasConcept C121332964 @default.
- W4378549275 hasConcept C124223222 @default.
- W4378549275 hasConcept C139066938 @default.
- W4378549275 hasConcept C145148216 @default.
- W4378549275 hasConcept C147789679 @default.
- W4378549275 hasConcept C177801218 @default.
- W4378549275 hasConcept C178790620 @default.
- W4378549275 hasConcept C184779094 @default.
- W4378549275 hasConcept C185592680 @default.
- W4378549275 hasConcept C198291218 @default.
- W4378549275 hasConcept C2776722999 @default.
- W4378549275 hasConcept C40875361 @default.
- W4378549275 hasConcept C43617362 @default.
- W4378549275 hasConcept C51884965 @default.
- W4378549275 hasConcept C55493867 @default.
- W4378549275 hasConcept C57687973 @default.
- W4378549275 hasConcept C73051877 @default.
- W4378549275 hasConcept C97355855 @default.
- W4378549275 hasConceptScore W4378549275C108213311 @default.
- W4378549275 hasConceptScore W4378549275C113196181 @default.
- W4378549275 hasConceptScore W4378549275C121332964 @default.
- W4378549275 hasConceptScore W4378549275C124223222 @default.
- W4378549275 hasConceptScore W4378549275C139066938 @default.
- W4378549275 hasConceptScore W4378549275C145148216 @default.
- W4378549275 hasConceptScore W4378549275C147789679 @default.
- W4378549275 hasConceptScore W4378549275C177801218 @default.
- W4378549275 hasConceptScore W4378549275C178790620 @default.
- W4378549275 hasConceptScore W4378549275C184779094 @default.
- W4378549275 hasConceptScore W4378549275C185592680 @default.
- W4378549275 hasConceptScore W4378549275C198291218 @default.
- W4378549275 hasConceptScore W4378549275C2776722999 @default.
- W4378549275 hasConceptScore W4378549275C40875361 @default.
- W4378549275 hasConceptScore W4378549275C43617362 @default.
- W4378549275 hasConceptScore W4378549275C51884965 @default.
- W4378549275 hasConceptScore W4378549275C55493867 @default.
- W4378549275 hasConceptScore W4378549275C57687973 @default.
- W4378549275 hasConceptScore W4378549275C73051877 @default.
- W4378549275 hasConceptScore W4378549275C97355855 @default.
- W4378549275 hasLocation W43785492751 @default.
- W4378549275 hasOpenAccess W4378549275 @default.
- W4378549275 hasPrimaryLocation W43785492751 @default.
- W4378549275 hasRelatedWork W1594165302 @default.
- W4378549275 hasRelatedWork W1605093226 @default.
- W4378549275 hasRelatedWork W2007678973 @default.
- W4378549275 hasRelatedWork W2413328069 @default.
- W4378549275 hasRelatedWork W2490791668 @default.
- W4378549275 hasRelatedWork W2559977587 @default.
- W4378549275 hasRelatedWork W2910057172 @default.
- W4378549275 hasRelatedWork W3092601796 @default.
- W4378549275 hasRelatedWork W3203721644 @default.
- W4378549275 hasRelatedWork W4206898548 @default.
- W4378549275 isParatext "false" @default.
- W4378549275 isRetracted "false" @default.
- W4378549275 workType "peer-review" @default.