Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378549672> ?p ?o ?g. }
- W4378549672 endingPage "119039" @default.
- W4378549672 startingPage "119039" @default.
- W4378549672 abstract "The main bottleneck for heat-assisted magnetic recording (HAMR) to achieve a potential areal density of 4 Tb/in2 is the difficulty in obtaining FePt-X nanogranular media with an ideal stacking structure of perfectly isolated L10-FePt columnar nanograins. Here, we present a fully automated routine that combines a convolutional neural network and machine vision to enable data mining from transmission electron microscopy images of FePt-C nanogranular media. This allowed us to generate a dataset and implement a machine learning optimization model that guides process parameters to achieve the desired nanostructure, i.e., small grain size with unimodal distribution and a large coercivity, which was successfully validated experimentally. This work demonstrates the promise of data-driven design of high-density HAMR media." @default.
- W4378549672 created "2023-05-28" @default.
- W4378549672 creator A5001691658 @default.
- W4378549672 creator A5047584230 @default.
- W4378549672 creator A5052804264 @default.
- W4378549672 creator A5055552941 @default.
- W4378549672 creator A5078413045 @default.
- W4378549672 creator A5089821455 @default.
- W4378549672 date "2023-08-01" @default.
- W4378549672 modified "2023-09-26" @default.
- W4378549672 title "Data-driven optimization of FePt heat-assisted magnetic recording media accelerated by deep learning TEM image segmentation" @default.
- W4378549672 cites W1595159159 @default.
- W4378549672 cites W1963962313 @default.
- W4378549672 cites W1973459101 @default.
- W4378549672 cites W1986378542 @default.
- W4378549672 cites W2033332794 @default.
- W4378549672 cites W2093733975 @default.
- W4378549672 cites W2145244878 @default.
- W4378549672 cites W2162299771 @default.
- W4378549672 cites W2788477897 @default.
- W4378549672 cites W2888014016 @default.
- W4378549672 cites W2895871797 @default.
- W4378549672 cites W2962448496 @default.
- W4378549672 cites W2963037989 @default.
- W4378549672 cites W2981313909 @default.
- W4378549672 cites W3015788359 @default.
- W4378549672 cites W3027542479 @default.
- W4378549672 cites W3081706073 @default.
- W4378549672 cites W3164406833 @default.
- W4378549672 cites W3184704320 @default.
- W4378549672 cites W4200179872 @default.
- W4378549672 cites W4211061525 @default.
- W4378549672 cites W4221166767 @default.
- W4378549672 cites W4280524482 @default.
- W4378549672 doi "https://doi.org/10.1016/j.actamat.2023.119039" @default.
- W4378549672 hasPublicationYear "2023" @default.
- W4378549672 type Work @default.
- W4378549672 citedByCount "0" @default.
- W4378549672 crossrefType "journal-article" @default.
- W4378549672 hasAuthorship W4378549672A5001691658 @default.
- W4378549672 hasAuthorship W4378549672A5047584230 @default.
- W4378549672 hasAuthorship W4378549672A5052804264 @default.
- W4378549672 hasAuthorship W4378549672A5055552941 @default.
- W4378549672 hasAuthorship W4378549672A5078413045 @default.
- W4378549672 hasAuthorship W4378549672A5089821455 @default.
- W4378549672 hasConcept C119857082 @default.
- W4378549672 hasConcept C121332964 @default.
- W4378549672 hasConcept C126530901 @default.
- W4378549672 hasConcept C146088050 @default.
- W4378549672 hasConcept C149635348 @default.
- W4378549672 hasConcept C154945302 @default.
- W4378549672 hasConcept C159985019 @default.
- W4378549672 hasConcept C171250308 @default.
- W4378549672 hasConcept C186187911 @default.
- W4378549672 hasConcept C190352325 @default.
- W4378549672 hasConcept C191897082 @default.
- W4378549672 hasConcept C192191005 @default.
- W4378549672 hasConcept C192562407 @default.
- W4378549672 hasConcept C24890656 @default.
- W4378549672 hasConcept C26873012 @default.
- W4378549672 hasConcept C2776578331 @default.
- W4378549672 hasConcept C2778596170 @default.
- W4378549672 hasConcept C2780513914 @default.
- W4378549672 hasConcept C33347731 @default.
- W4378549672 hasConcept C41008148 @default.
- W4378549672 hasConcept C46141821 @default.
- W4378549672 hasConcept C56318395 @default.
- W4378549672 hasConcept C81363708 @default.
- W4378549672 hasConcept C89600930 @default.
- W4378549672 hasConceptScore W4378549672C119857082 @default.
- W4378549672 hasConceptScore W4378549672C121332964 @default.
- W4378549672 hasConceptScore W4378549672C126530901 @default.
- W4378549672 hasConceptScore W4378549672C146088050 @default.
- W4378549672 hasConceptScore W4378549672C149635348 @default.
- W4378549672 hasConceptScore W4378549672C154945302 @default.
- W4378549672 hasConceptScore W4378549672C159985019 @default.
- W4378549672 hasConceptScore W4378549672C171250308 @default.
- W4378549672 hasConceptScore W4378549672C186187911 @default.
- W4378549672 hasConceptScore W4378549672C190352325 @default.
- W4378549672 hasConceptScore W4378549672C191897082 @default.
- W4378549672 hasConceptScore W4378549672C192191005 @default.
- W4378549672 hasConceptScore W4378549672C192562407 @default.
- W4378549672 hasConceptScore W4378549672C24890656 @default.
- W4378549672 hasConceptScore W4378549672C26873012 @default.
- W4378549672 hasConceptScore W4378549672C2776578331 @default.
- W4378549672 hasConceptScore W4378549672C2778596170 @default.
- W4378549672 hasConceptScore W4378549672C2780513914 @default.
- W4378549672 hasConceptScore W4378549672C33347731 @default.
- W4378549672 hasConceptScore W4378549672C41008148 @default.
- W4378549672 hasConceptScore W4378549672C46141821 @default.
- W4378549672 hasConceptScore W4378549672C56318395 @default.
- W4378549672 hasConceptScore W4378549672C81363708 @default.
- W4378549672 hasConceptScore W4378549672C89600930 @default.
- W4378549672 hasFunder F4320320912 @default.
- W4378549672 hasFunder F4320334789 @default.
- W4378549672 hasLocation W43785496721 @default.
- W4378549672 hasOpenAccess W4378549672 @default.
- W4378549672 hasPrimaryLocation W43785496721 @default.