Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378550384> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4378550384 endingPage "120535" @default.
- W4378550384 startingPage "120535" @default.
- W4378550384 abstract "The optimization of intersection signal control can improve traffic efficiency, reduce congestion degree, and improve traffic safety. Aiming at implementing the coordinated adaptive traffic signal control (ATSC) across large-scale arterial network, multi-agent reinforcement learning (MARL) has been widely concerned and lucubrated. Nevertheless, the existing MARL-based ATSC studies suffers from several limitations: (1) While most existing researches focused on the mobility performance of controlled corridor, there calls for a methodology that aims at combine multi-objective performance on traffic safety, efficiency, and network coordination simultaneously; (2) Most methods ignore the correlations between multiple agents, nor considers the spatial-temporal dependencies among the corelated neighboring intersections due to high communications requirements, which can hardly be achieved in real adaptive coordination control. To overcome the aforementioned difficulties, a multi-objective reinforcement learning model (NACRL) for network-wide coordinated signal control is proposed. Firstly, to enforce a coordinated network control with safety and efficiency considerations, a reward mechanism inspecting both traffic safety and traffic efficiency indicators was designed to achieve ideal performance in terms of mobility, safety and smooth. Secondly, the proposed NACRL conducted a centralized training-decentralized execution framework, this overcomes the critical limitation of data transmission in the field implementation while explicitly analyzing the traffic state over the entire network instead of examining each isolated intersection. Last but not least, the proposed algorithm utilized the attention mechanism to dynamically capture the sophisticated spatial-temporal dependencies over the complex arterial network, which aids the better coordinated control over multi-agents deployed at the intersections across the corridor. To testify the effeteness of the proposed algorithm, extensive experiments were implemented in both large-scale synthetic traffic grid and real-world arterial network. The experiment demonstrated that the proposed NACRL algorithm outperforms other state-of-the-art baselines with simultaneously improved performance in terms of traffic safety, traffic efficiency and network coordination, as well as improved algorithm convergence and interpretability." @default.
- W4378550384 created "2023-05-28" @default.
- W4378550384 creator A5000493608 @default.
- W4378550384 creator A5005122857 @default.
- W4378550384 creator A5028714962 @default.
- W4378550384 creator A5043475072 @default.
- W4378550384 creator A5053677134 @default.
- W4378550384 date "2023-11-01" @default.
- W4378550384 modified "2023-10-18" @default.
- W4378550384 title "Multi-Objective Traffic Signal Control Using Network-Wide Agent Coordinated Reinforcement Learning" @default.
- W4378550384 cites W1999371911 @default.
- W4378550384 cites W2009303086 @default.
- W4378550384 cites W2033254849 @default.
- W4378550384 cites W2124657875 @default.
- W4378550384 cites W2145339207 @default.
- W4378550384 cites W2288393747 @default.
- W4378550384 cites W2498017881 @default.
- W4378550384 cites W2761656023 @default.
- W4378550384 cites W2766381093 @default.
- W4378550384 cites W2904065660 @default.
- W4378550384 cites W2904906709 @default.
- W4378550384 cites W2915117209 @default.
- W4378550384 cites W2919115771 @default.
- W4378550384 cites W2933570795 @default.
- W4378550384 cites W2945442007 @default.
- W4378550384 cites W2963027910 @default.
- W4378550384 cites W2964255692 @default.
- W4378550384 cites W2967474307 @default.
- W4378550384 cites W3011507876 @default.
- W4378550384 cites W3042783189 @default.
- W4378550384 cites W3044015199 @default.
- W4378550384 cites W3067407344 @default.
- W4378550384 cites W3091266930 @default.
- W4378550384 cites W3096739060 @default.
- W4378550384 cites W3102059892 @default.
- W4378550384 cites W3133741656 @default.
- W4378550384 cites W4200351942 @default.
- W4378550384 cites W4210742101 @default.
- W4378550384 cites W4282943221 @default.
- W4378550384 cites W4312812839 @default.
- W4378550384 cites W4313036208 @default.
- W4378550384 doi "https://doi.org/10.1016/j.eswa.2023.120535" @default.
- W4378550384 hasPublicationYear "2023" @default.
- W4378550384 type Work @default.
- W4378550384 citedByCount "0" @default.
- W4378550384 crossrefType "journal-article" @default.
- W4378550384 hasAuthorship W4378550384A5000493608 @default.
- W4378550384 hasAuthorship W4378550384A5005122857 @default.
- W4378550384 hasAuthorship W4378550384A5028714962 @default.
- W4378550384 hasAuthorship W4378550384A5043475072 @default.
- W4378550384 hasAuthorship W4378550384A5053677134 @default.
- W4378550384 hasConcept C120314980 @default.
- W4378550384 hasConcept C127413603 @default.
- W4378550384 hasConcept C154945302 @default.
- W4378550384 hasConcept C22212356 @default.
- W4378550384 hasConcept C2775924081 @default.
- W4378550384 hasConcept C41008148 @default.
- W4378550384 hasConcept C64543145 @default.
- W4378550384 hasConcept C761482 @default.
- W4378550384 hasConcept C76155785 @default.
- W4378550384 hasConcept C79403827 @default.
- W4378550384 hasConcept C97541855 @default.
- W4378550384 hasConceptScore W4378550384C120314980 @default.
- W4378550384 hasConceptScore W4378550384C127413603 @default.
- W4378550384 hasConceptScore W4378550384C154945302 @default.
- W4378550384 hasConceptScore W4378550384C22212356 @default.
- W4378550384 hasConceptScore W4378550384C2775924081 @default.
- W4378550384 hasConceptScore W4378550384C41008148 @default.
- W4378550384 hasConceptScore W4378550384C64543145 @default.
- W4378550384 hasConceptScore W4378550384C761482 @default.
- W4378550384 hasConceptScore W4378550384C76155785 @default.
- W4378550384 hasConceptScore W4378550384C79403827 @default.
- W4378550384 hasConceptScore W4378550384C97541855 @default.
- W4378550384 hasLocation W43785503841 @default.
- W4378550384 hasOpenAccess W4378550384 @default.
- W4378550384 hasPrimaryLocation W43785503841 @default.
- W4378550384 hasRelatedWork W1562959674 @default.
- W4378550384 hasRelatedWork W2923653485 @default.
- W4378550384 hasRelatedWork W2957776456 @default.
- W4378550384 hasRelatedWork W3049333768 @default.
- W4378550384 hasRelatedWork W3088315509 @default.
- W4378550384 hasRelatedWork W3209094908 @default.
- W4378550384 hasRelatedWork W4210912933 @default.
- W4378550384 hasRelatedWork W4255994452 @default.
- W4378550384 hasRelatedWork W4361026739 @default.
- W4378550384 hasRelatedWork W4372194388 @default.
- W4378550384 hasVolume "229" @default.
- W4378550384 isParatext "false" @default.
- W4378550384 isRetracted "false" @default.
- W4378550384 workType "article" @default.