Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378551489> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4378551489 endingPage "379" @default.
- W4378551489 startingPage "367" @default.
- W4378551489 abstract "Humans frequently experience dental problems, and as the population consumes more sugar and sweets, these problems will become more prevalent. The dentist always locates the problems through physical examination and X-ray photos. Technology is advancing quickly across the board in the health sciences, and deep learning modules known as transfer learning are highly helpful in recognizing patterns or individual pixels in an imagenet. Dental X-ray pictures can be employed in the transfer learning process as well as the CNN approach. In this study, dental X-ray pictures are recognized using six transfer learning models: Resnet50, VGG16, InceptionV3, Xception, and EfficientnetB7. Although the InceptionV3 also offers the best waiting time of 7.58 min with an accuracy of 0.93, the Densenet201 offers the best accuracy of 0.98 with a waiting time of 12.91 min. Although the waiting time is longer than inceptionV3, it can be argued that dental abnormalities can be diagnosed more effectively with the densenet201." @default.
- W4378551489 created "2023-05-28" @default.
- W4378551489 creator A5006759019 @default.
- W4378551489 creator A5026514810 @default.
- W4378551489 creator A5027707655 @default.
- W4378551489 creator A5092035121 @default.
- W4378551489 creator A5092035122 @default.
- W4378551489 date "2023-01-01" @default.
- W4378551489 modified "2023-09-27" @default.
- W4378551489 title "Detection of Dental Issues Using the Transfer Learning Methods" @default.
- W4378551489 cites W1984482757 @default.
- W4378551489 cites W2051392017 @default.
- W4378551489 cites W2144642531 @default.
- W4378551489 cites W2162294430 @default.
- W4378551489 cites W2162409253 @default.
- W4378551489 cites W2328096907 @default.
- W4378551489 cites W2519139425 @default.
- W4378551489 cites W2533800772 @default.
- W4378551489 cites W2758062365 @default.
- W4378551489 cites W2883741661 @default.
- W4378551489 cites W2910963184 @default.
- W4378551489 cites W2918471352 @default.
- W4378551489 cites W2953061686 @default.
- W4378551489 cites W2979436696 @default.
- W4378551489 cites W3018386144 @default.
- W4378551489 cites W3108776516 @default.
- W4378551489 cites W3119985616 @default.
- W4378551489 cites W4220805960 @default.
- W4378551489 cites W4244847143 @default.
- W4378551489 cites W4249723987 @default.
- W4378551489 doi "https://doi.org/10.1007/978-981-19-9483-8_31" @default.
- W4378551489 hasPublicationYear "2023" @default.
- W4378551489 type Work @default.
- W4378551489 citedByCount "0" @default.
- W4378551489 crossrefType "book-chapter" @default.
- W4378551489 hasAuthorship W4378551489A5006759019 @default.
- W4378551489 hasAuthorship W4378551489A5026514810 @default.
- W4378551489 hasAuthorship W4378551489A5027707655 @default.
- W4378551489 hasAuthorship W4378551489A5092035121 @default.
- W4378551489 hasAuthorship W4378551489A5092035122 @default.
- W4378551489 hasConcept C108583219 @default.
- W4378551489 hasConcept C111919701 @default.
- W4378551489 hasConcept C150899416 @default.
- W4378551489 hasConcept C154945302 @default.
- W4378551489 hasConcept C173608175 @default.
- W4378551489 hasConcept C199343813 @default.
- W4378551489 hasConcept C2776175482 @default.
- W4378551489 hasConcept C2908647359 @default.
- W4378551489 hasConcept C41008148 @default.
- W4378551489 hasConcept C71924100 @default.
- W4378551489 hasConcept C98045186 @default.
- W4378551489 hasConcept C99454951 @default.
- W4378551489 hasConceptScore W4378551489C108583219 @default.
- W4378551489 hasConceptScore W4378551489C111919701 @default.
- W4378551489 hasConceptScore W4378551489C150899416 @default.
- W4378551489 hasConceptScore W4378551489C154945302 @default.
- W4378551489 hasConceptScore W4378551489C173608175 @default.
- W4378551489 hasConceptScore W4378551489C199343813 @default.
- W4378551489 hasConceptScore W4378551489C2776175482 @default.
- W4378551489 hasConceptScore W4378551489C2908647359 @default.
- W4378551489 hasConceptScore W4378551489C41008148 @default.
- W4378551489 hasConceptScore W4378551489C71924100 @default.
- W4378551489 hasConceptScore W4378551489C98045186 @default.
- W4378551489 hasConceptScore W4378551489C99454951 @default.
- W4378551489 hasLocation W43785514891 @default.
- W4378551489 hasOpenAccess W4378551489 @default.
- W4378551489 hasPrimaryLocation W43785514891 @default.
- W4378551489 hasRelatedWork W2889705046 @default.
- W4378551489 hasRelatedWork W2949280030 @default.
- W4378551489 hasRelatedWork W2953350812 @default.
- W4378551489 hasRelatedWork W2997709384 @default.
- W4378551489 hasRelatedWork W3018421652 @default.
- W4378551489 hasRelatedWork W3091976719 @default.
- W4378551489 hasRelatedWork W3166467183 @default.
- W4378551489 hasRelatedWork W3189091156 @default.
- W4378551489 hasRelatedWork W3192840557 @default.
- W4378551489 hasRelatedWork W4213299466 @default.
- W4378551489 isParatext "false" @default.
- W4378551489 isRetracted "false" @default.
- W4378551489 workType "book-chapter" @default.