Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378575061> ?p ?o ?g. }
- W4378575061 endingPage "e16724" @default.
- W4378575061 startingPage "e16724" @default.
- W4378575061 abstract "Background and objectivePredicting the long-term expansion and remodeling of the left ventricle in patients is challenging task but it has the potential to be clinically very useful.MethodsIn our study, we present machine learning models based on random forests, gradient boosting, and neural networks, used to track cardiac hypertrophy. We collected data from multiple patients, and then the model was trained using the patient's medical history and present level of cardiac health. We also demonstrate a physical-based model, using the finite element procedure to simulate the development of cardiac hypertrophy.ResultsOur models were used to forecast the evolution of hypertrophy over six years. The machine learning model and finite element model provided similar results.ConclusionsThe finite element model is much slower, but it's more accurate compared to the machine learning model since it's based on physical laws guiding the hypertrophy process. On the other hand, the machine learning model is fast but the results can be less trustworthy in some cases. Both of our models, enable us to monitor the development of the disease. Because of its speed machine learning model is more likely to be used in clinical practice. Further improvements to our machine learning model could be achieved by collecting data from finite element simulations, adding them to the dataset, and retraining the model. This can result in a fast and more accurate model combining the advantages of physical-based and machine learning modeling." @default.
- W4378575061 created "2023-05-28" @default.
- W4378575061 creator A5006131395 @default.
- W4378575061 creator A5020300925 @default.
- W4378575061 creator A5027043570 @default.
- W4378575061 creator A5035468778 @default.
- W4378575061 creator A5036069642 @default.
- W4378575061 creator A5045389796 @default.
- W4378575061 creator A5046660824 @default.
- W4378575061 creator A5055471753 @default.
- W4378575061 creator A5082132528 @default.
- W4378575061 creator A5088302186 @default.
- W4378575061 creator A5091224561 @default.
- W4378575061 date "2023-06-01" @default.
- W4378575061 modified "2023-10-16" @default.
- W4378575061 title "Machine learning and physical based modeling for cardiac hypertrophy" @default.
- W4378575061 cites W2015291817 @default.
- W4378575061 cites W2019074198 @default.
- W4378575061 cites W2022879805 @default.
- W4378575061 cites W2051177122 @default.
- W4378575061 cites W2102339840 @default.
- W4378575061 cites W2119361626 @default.
- W4378575061 cites W2120813609 @default.
- W4378575061 cites W2156174854 @default.
- W4378575061 cites W2169139442 @default.
- W4378575061 cites W2340072421 @default.
- W4378575061 cites W2563748743 @default.
- W4378575061 cites W2796665202 @default.
- W4378575061 cites W2902900369 @default.
- W4378575061 cites W2911964244 @default.
- W4378575061 cites W2921573345 @default.
- W4378575061 cites W2945166483 @default.
- W4378575061 cites W2999600747 @default.
- W4378575061 cites W3154408234 @default.
- W4378575061 cites W3181884062 @default.
- W4378575061 cites W4239510810 @default.
- W4378575061 cites W844253406 @default.
- W4378575061 doi "https://doi.org/10.1016/j.heliyon.2023.e16724" @default.
- W4378575061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37313176" @default.
- W4378575061 hasPublicationYear "2023" @default.
- W4378575061 type Work @default.
- W4378575061 citedByCount "0" @default.
- W4378575061 crossrefType "journal-article" @default.
- W4378575061 hasAuthorship W4378575061A5006131395 @default.
- W4378575061 hasAuthorship W4378575061A5020300925 @default.
- W4378575061 hasAuthorship W4378575061A5027043570 @default.
- W4378575061 hasAuthorship W4378575061A5035468778 @default.
- W4378575061 hasAuthorship W4378575061A5036069642 @default.
- W4378575061 hasAuthorship W4378575061A5045389796 @default.
- W4378575061 hasAuthorship W4378575061A5046660824 @default.
- W4378575061 hasAuthorship W4378575061A5055471753 @default.
- W4378575061 hasAuthorship W4378575061A5082132528 @default.
- W4378575061 hasAuthorship W4378575061A5088302186 @default.
- W4378575061 hasAuthorship W4378575061A5091224561 @default.
- W4378575061 hasBestOaLocation W43785750611 @default.
- W4378575061 hasConcept C108583219 @default.
- W4378575061 hasConcept C119857082 @default.
- W4378575061 hasConcept C126322002 @default.
- W4378575061 hasConcept C144133560 @default.
- W4378575061 hasConcept C154945302 @default.
- W4378575061 hasConcept C155202549 @default.
- W4378575061 hasConcept C164705383 @default.
- W4378575061 hasConcept C169258074 @default.
- W4378575061 hasConcept C2776002628 @default.
- W4378575061 hasConcept C2778712577 @default.
- W4378575061 hasConcept C2778921608 @default.
- W4378575061 hasConcept C41008148 @default.
- W4378575061 hasConcept C50644808 @default.
- W4378575061 hasConcept C70153297 @default.
- W4378575061 hasConcept C71924100 @default.
- W4378575061 hasConcept C84393581 @default.
- W4378575061 hasConceptScore W4378575061C108583219 @default.
- W4378575061 hasConceptScore W4378575061C119857082 @default.
- W4378575061 hasConceptScore W4378575061C126322002 @default.
- W4378575061 hasConceptScore W4378575061C144133560 @default.
- W4378575061 hasConceptScore W4378575061C154945302 @default.
- W4378575061 hasConceptScore W4378575061C155202549 @default.
- W4378575061 hasConceptScore W4378575061C164705383 @default.
- W4378575061 hasConceptScore W4378575061C169258074 @default.
- W4378575061 hasConceptScore W4378575061C2776002628 @default.
- W4378575061 hasConceptScore W4378575061C2778712577 @default.
- W4378575061 hasConceptScore W4378575061C2778921608 @default.
- W4378575061 hasConceptScore W4378575061C41008148 @default.
- W4378575061 hasConceptScore W4378575061C50644808 @default.
- W4378575061 hasConceptScore W4378575061C70153297 @default.
- W4378575061 hasConceptScore W4378575061C71924100 @default.
- W4378575061 hasConceptScore W4378575061C84393581 @default.
- W4378575061 hasIssue "6" @default.
- W4378575061 hasLocation W43785750611 @default.
- W4378575061 hasLocation W43785750612 @default.
- W4378575061 hasLocation W43785750613 @default.
- W4378575061 hasLocation W43785750614 @default.
- W4378575061 hasLocation W43785750615 @default.
- W4378575061 hasOpenAccess W4378575061 @default.
- W4378575061 hasPrimaryLocation W43785750611 @default.
- W4378575061 hasRelatedWork W2006651773 @default.
- W4378575061 hasRelatedWork W2027050655 @default.
- W4378575061 hasRelatedWork W2050078012 @default.