Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378596986> ?p ?o ?g. }
- W4378596986 endingPage "1125" @default.
- W4378596986 startingPage "1113" @default.
- W4378596986 abstract "Context Feed is the largest expense on a dairy farm, therefore improving feed efficiency is important. Recording dry-matter intake (DMI) is a prerequisite for calculating feed efficiency. Genetic variation of feed intake and feed efficiency varies across lactation stages and parities. DMI is an expensive and difficult-to-measure trait. This raises the question of which time periods during lactation would be most appropriate to measure DMI. Aims The aim was to evaluate whether sequence variants selected from genome-wide association studies (GWAS) for DMI recorded at multiple lactation time periods and parities would increase the accuracy of genomic estimated breeding values (GEBVs) for DMI and residual feed intake (RFI). Methods Data of 2274 overseas lactating cows were used for the GWAS to select sequence variants. GWAS was performed using the average of the DMI phenotypes in a 30-day window of six different time periods across the lactation. The most significant sequence variants were selected from the GWAS at each time period for either first or later parities. GEBVs for DMI and RFI in Australian lactating cows were estimated using BayesRC with 50 k single nucleotide polymorphisms (SNPs) and selected GWAS sequence variants. Key results There were differences in DMI genomic correlations and heritabilities between first and later parities and within parity across lactation time periods. Compared with using 50 k single-nucleotide polymorphisms (SNPs) only, the accuracy of DMI GEBVs increased by up to 11% by using the 50 k SNPs plus the selected sequence variants. Compared with DMI, the increase in accuracy for RFI was lower (by 6%) likely because the sequence variants were selected from GWAS for DMI not RFI. The accuracies for DMI and RFI GEBVs were highest by using selected sequence variants from the DMI GWAS in the mid- to late-lactation periods in later parity. Conclusions Our results showed that DMI phenotypes in late lactation time periods could capture more genetic variation and increase genomic prediction accuracy through the use of custom genotype panels in genomic selection. Implications Collecting DMI at the optimal time period(s) of lactation may help develop more accurate and cost-effective breeding values for feed efficiency in dairy cattle." @default.
- W4378596986 created "2023-05-29" @default.
- W4378596986 creator A5011582978 @default.
- W4378596986 creator A5016372019 @default.
- W4378596986 creator A5019770270 @default.
- W4378596986 creator A5044519232 @default.
- W4378596986 creator A5054482953 @default.
- W4378596986 creator A5057941566 @default.
- W4378596986 creator A5058891795 @default.
- W4378596986 creator A5067334110 @default.
- W4378596986 creator A5067804290 @default.
- W4378596986 creator A5071852930 @default.
- W4378596986 creator A5079648752 @default.
- W4378596986 creator A5081841016 @default.
- W4378596986 creator A5089956650 @default.
- W4378596986 date "2023-05-29" @default.
- W4378596986 modified "2023-09-25" @default.
- W4378596986 title "Use of dry-matter intake recorded at multiple time periods during lactation increases the accuracy of genomic prediction for dry-matter intake and residual feed intake in dairy cattle" @default.
- W4378596986 cites W1519977649 @default.
- W4378596986 cites W1745029604 @default.
- W4378596986 cites W1911678449 @default.
- W4378596986 cites W1964806307 @default.
- W4378596986 cites W1970459140 @default.
- W4378596986 cites W1977950286 @default.
- W4378596986 cites W1995766044 @default.
- W4378596986 cites W2001557983 @default.
- W4378596986 cites W2033151532 @default.
- W4378596986 cites W2038378802 @default.
- W4378596986 cites W2053588621 @default.
- W4378596986 cites W2055023166 @default.
- W4378596986 cites W2055370656 @default.
- W4378596986 cites W2063680546 @default.
- W4378596986 cites W2088796387 @default.
- W4378596986 cites W2098381128 @default.
- W4378596986 cites W2111716958 @default.
- W4378596986 cites W2147093459 @default.
- W4378596986 cites W2149016095 @default.
- W4378596986 cites W2158283071 @default.
- W4378596986 cites W2164492582 @default.
- W4378596986 cites W2186430357 @default.
- W4378596986 cites W2238355159 @default.
- W4378596986 cites W2275208244 @default.
- W4378596986 cites W2510973425 @default.
- W4378596986 cites W2517545447 @default.
- W4378596986 cites W2529241974 @default.
- W4378596986 cites W2547728331 @default.
- W4378596986 cites W2565459707 @default.
- W4378596986 cites W2592004722 @default.
- W4378596986 cites W2749735839 @default.
- W4378596986 cites W2758325521 @default.
- W4378596986 cites W2888467330 @default.
- W4378596986 cites W2902196707 @default.
- W4378596986 cites W2922767806 @default.
- W4378596986 cites W2946872842 @default.
- W4378596986 cites W2994165772 @default.
- W4378596986 cites W3161821996 @default.
- W4378596986 cites W4210437844 @default.
- W4378596986 cites W4229064969 @default.
- W4378596986 cites W4294919625 @default.
- W4378596986 doi "https://doi.org/10.1071/an23022" @default.
- W4378596986 hasPublicationYear "2023" @default.
- W4378596986 type Work @default.
- W4378596986 citedByCount "0" @default.
- W4378596986 crossrefType "journal-article" @default.
- W4378596986 hasAuthorship W4378596986A5011582978 @default.
- W4378596986 hasAuthorship W4378596986A5016372019 @default.
- W4378596986 hasAuthorship W4378596986A5019770270 @default.
- W4378596986 hasAuthorship W4378596986A5044519232 @default.
- W4378596986 hasAuthorship W4378596986A5054482953 @default.
- W4378596986 hasAuthorship W4378596986A5057941566 @default.
- W4378596986 hasAuthorship W4378596986A5058891795 @default.
- W4378596986 hasAuthorship W4378596986A5067334110 @default.
- W4378596986 hasAuthorship W4378596986A5067804290 @default.
- W4378596986 hasAuthorship W4378596986A5071852930 @default.
- W4378596986 hasAuthorship W4378596986A5079648752 @default.
- W4378596986 hasAuthorship W4378596986A5081841016 @default.
- W4378596986 hasAuthorship W4378596986A5089956650 @default.
- W4378596986 hasBestOaLocation W43785969861 @default.
- W4378596986 hasConcept C104317684 @default.
- W4378596986 hasConcept C106208931 @default.
- W4378596986 hasConcept C134018914 @default.
- W4378596986 hasConcept C135763542 @default.
- W4378596986 hasConcept C140793950 @default.
- W4378596986 hasConcept C147583825 @default.
- W4378596986 hasConcept C150903083 @default.
- W4378596986 hasConcept C151730666 @default.
- W4378596986 hasConcept C153209595 @default.
- W4378596986 hasConcept C22830521 @default.
- W4378596986 hasConcept C2776659692 @default.
- W4378596986 hasConcept C2776977481 @default.
- W4378596986 hasConcept C2778890363 @default.
- W4378596986 hasConcept C2779234561 @default.
- W4378596986 hasConcept C2779343474 @default.
- W4378596986 hasConcept C2780138947 @default.
- W4378596986 hasConcept C2780527838 @default.
- W4378596986 hasConcept C54355233 @default.
- W4378596986 hasConcept C68873052 @default.
- W4378596986 hasConcept C86803240 @default.