Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378619583> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4378619583 endingPage "72" @default.
- W4378619583 startingPage "54" @default.
- W4378619583 abstract "Abstract With the rapid development of computer computing power, as an important method in the field of artificial intelligence, deep learning has amazing learning ability, especially in dealing with massive data, which makes deep learning in the fields of image recognition, image classification, natural language processing, data mining and unmanned driving, Has shown an extraordinary role. In previous studies, the style transfer algorithm has not developed well due to the poor computing power of Computer, the basic configuration of computer hardware can not meet the minimum requirements and the poor image effect after migration. However, with the development of computer hardware and the rapid change of GPU computing power, the style transfer network based on deep learning has become a hot issue in the study of style transfer in recent years. According to the research, although the traditional style transfer method can obtain the texture, color and other information of the style image, the model needs to be learned every time a new target image is generated, and the time cost during this period is very high. In this way, the trained model is not repeatable, and the generated image is often very random and can not get good results. Therefore, the emergence of style transfer methods based on deep learning solves the limitations of traditional style transfer methods. Style transfer methods based on deep learning are faster than traditional style transfer methods, and the generalization of the model is better. The style transfer algorithms of main neural networks are divided into two categories, Slow style transfer based on image iteration and fast style transfer based on model iteration. VGG network model can combine style image and content image, and greatly improve the style transfer efficiency of image." @default.
- W4378619583 created "2023-05-29" @default.
- W4378619583 creator A5011890541 @default.
- W4378619583 creator A5015729655 @default.
- W4378619583 date "2022-01-01" @default.
- W4378619583 modified "2023-10-17" @default.
- W4378619583 title "Style Transfer Based on VGG Network" @default.
- W4378619583 cites W1932847118 @default.
- W4378619583 cites W2097117768 @default.
- W4378619583 cites W2331128040 @default.
- W4378619583 cites W2572730214 @default.
- W4378619583 cites W2603777577 @default.
- W4378619583 cites W2962793481 @default.
- W4378619583 cites W2963920537 @default.
- W4378619583 doi "https://doi.org/10.2478/ijanmc-2022-0005" @default.
- W4378619583 hasPublicationYear "2022" @default.
- W4378619583 type Work @default.
- W4378619583 citedByCount "0" @default.
- W4378619583 crossrefType "journal-article" @default.
- W4378619583 hasAuthorship W4378619583A5011890541 @default.
- W4378619583 hasAuthorship W4378619583A5015729655 @default.
- W4378619583 hasBestOaLocation W43786195831 @default.
- W4378619583 hasConcept C108583219 @default.
- W4378619583 hasConcept C115961682 @default.
- W4378619583 hasConcept C119857082 @default.
- W4378619583 hasConcept C134306372 @default.
- W4378619583 hasConcept C150899416 @default.
- W4378619583 hasConcept C154945302 @default.
- W4378619583 hasConcept C166957645 @default.
- W4378619583 hasConcept C177148314 @default.
- W4378619583 hasConcept C202444582 @default.
- W4378619583 hasConcept C2776445246 @default.
- W4378619583 hasConcept C33923547 @default.
- W4378619583 hasConcept C41008148 @default.
- W4378619583 hasConcept C50644808 @default.
- W4378619583 hasConcept C95457728 @default.
- W4378619583 hasConcept C9652623 @default.
- W4378619583 hasConceptScore W4378619583C108583219 @default.
- W4378619583 hasConceptScore W4378619583C115961682 @default.
- W4378619583 hasConceptScore W4378619583C119857082 @default.
- W4378619583 hasConceptScore W4378619583C134306372 @default.
- W4378619583 hasConceptScore W4378619583C150899416 @default.
- W4378619583 hasConceptScore W4378619583C154945302 @default.
- W4378619583 hasConceptScore W4378619583C166957645 @default.
- W4378619583 hasConceptScore W4378619583C177148314 @default.
- W4378619583 hasConceptScore W4378619583C202444582 @default.
- W4378619583 hasConceptScore W4378619583C2776445246 @default.
- W4378619583 hasConceptScore W4378619583C33923547 @default.
- W4378619583 hasConceptScore W4378619583C41008148 @default.
- W4378619583 hasConceptScore W4378619583C50644808 @default.
- W4378619583 hasConceptScore W4378619583C95457728 @default.
- W4378619583 hasConceptScore W4378619583C9652623 @default.
- W4378619583 hasIssue "1" @default.
- W4378619583 hasLocation W43786195831 @default.
- W4378619583 hasOpenAccess W4378619583 @default.
- W4378619583 hasPrimaryLocation W43786195831 @default.
- W4378619583 hasRelatedWork W2946016983 @default.
- W4378619583 hasRelatedWork W2960456850 @default.
- W4378619583 hasRelatedWork W4312200629 @default.
- W4378619583 hasRelatedWork W4312685930 @default.
- W4378619583 hasRelatedWork W4312831135 @default.
- W4378619583 hasRelatedWork W4317565044 @default.
- W4378619583 hasRelatedWork W4318834068 @default.
- W4378619583 hasRelatedWork W4318957922 @default.
- W4378619583 hasRelatedWork W4322727400 @default.
- W4378619583 hasRelatedWork W4380611590 @default.
- W4378619583 hasVolume "7" @default.
- W4378619583 isParatext "false" @default.
- W4378619583 isRetracted "false" @default.
- W4378619583 workType "article" @default.