Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378652807> ?p ?o ?g. }
- W4378652807 endingPage "1385" @default.
- W4378652807 startingPage "1372" @default.
- W4378652807 abstract "Abstract 1. The influence of cyanobacteria on interspecies interactions has received growing attention as a predictor of aquatic ecosystem function. It is well‐known that cyanobacteria greatly affect predator‐induced phenotypic plasticity in planktonic animals. However, the underlying molecular mechanism remains unclear. 2. Here, we used Daphnia pulex as a model organism for inducible defence, examining its morphological and life‐history responses to fish kairomone while feeding on 100% Chlorella pyrenoides , or while feeding on 70% Chlorella and either microcystin‐producing or ‐free Microcystis aeruginosa , separately. Transcriptome profiles of kairomone‐exposed D . pulex fed different types of food were detected using RNA‐seq. How the differentially expressed genes and pathways identified are responsible for the altered adaptive traits under Microcystis stress was discussed. 3. Daphnia pulex fed 100% Chlorella matured at a smaller body size, elongated tail spine length, and produced smaller offspring as adaptive morphological and reproductive responses to fish kairomone. These anti‐predation defences entailed a cost in decreased somatic growth rate. Microcystis stress caused defence trade‐offs in both morphology and reproduction: reduction of body size at maturity was stronger whereas tail spine elongation was unchanged or inhibited. Given that reproductive investment was reduced overall in Daphnia exposed to fish kairomones, there was a trade‐off for unchanged offspring size by reducing offspring number in Daphnia fed Microcystis . Defence‐induced costs to growth were increased by Microcystis exposure. 4. Transcriptome analysis revealed that neuronal signals including acetylcholine and glutamate signalling implicated in kairomone reception and/or transmission exhibited stronger responses under Microcystis stress. Cuticle development associated with the biosynthesis of wax esters and chitin, modification of lipo‐chitin saccharides, and the stability of collagen triple helix apparently participated in the morphological changes. The arachidonic acid pathway and biosynthesis of cholesterol and steroid hormones mediated altered reproductive performance. In addition, metabolic processes such as detoxification, food assimilation, lysosome dysfunction and apoptosis activation were involved in the survival and growth of Daphnia , which may contribute to the increased defence‐induced cost in growth when fed Microcystis . 5. Taken together, these findings advance our understanding of the molecular mechanisms underlying anti‐predation defensive responses by Daphnia to cyanobacterial stress. This work also provides a reference for further exploring the functional genes that mediate zooplankton–fish coevolution dynamics under eutrophic conditions." @default.
- W4378652807 created "2023-05-30" @default.
- W4378652807 creator A5005173595 @default.
- W4378652807 creator A5006625650 @default.
- W4378652807 creator A5049555870 @default.
- W4378652807 creator A5065173002 @default.
- W4378652807 creator A5065745300 @default.
- W4378652807 creator A5075117721 @default.
- W4378652807 date "2023-05-29" @default.
- W4378652807 modified "2023-10-17" @default.
- W4378652807 title "Transcriptome analysis reveals the molecular basis of anti‐predation defence in <i>Daphnia pulex</i> simultaneously responding to <i>Microcystis aeruginosa</i>" @default.
- W4378652807 cites W1712984944 @default.
- W4378652807 cites W1822946862 @default.
- W4378652807 cites W1935825179 @default.
- W4378652807 cites W1964307104 @default.
- W4378652807 cites W1964860061 @default.
- W4378652807 cites W1970374913 @default.
- W4378652807 cites W1984865310 @default.
- W4378652807 cites W1985018803 @default.
- W4378652807 cites W1986346704 @default.
- W4378652807 cites W1986484818 @default.
- W4378652807 cites W1990328562 @default.
- W4378652807 cites W1992502566 @default.
- W4378652807 cites W1997036145 @default.
- W4378652807 cites W2008757142 @default.
- W4378652807 cites W2012096878 @default.
- W4378652807 cites W2016070297 @default.
- W4378652807 cites W2027131461 @default.
- W4378652807 cites W2029453966 @default.
- W4378652807 cites W2035013882 @default.
- W4378652807 cites W2035946761 @default.
- W4378652807 cites W2047014960 @default.
- W4378652807 cites W2052188227 @default.
- W4378652807 cites W2065070472 @default.
- W4378652807 cites W2066105460 @default.
- W4378652807 cites W2067081173 @default.
- W4378652807 cites W2067756529 @default.
- W4378652807 cites W2069111766 @default.
- W4378652807 cites W2070244517 @default.
- W4378652807 cites W2073232799 @default.
- W4378652807 cites W2077760444 @default.
- W4378652807 cites W2089037224 @default.
- W4378652807 cites W2093152418 @default.
- W4378652807 cites W2102342388 @default.
- W4378652807 cites W2116614622 @default.
- W4378652807 cites W2122474249 @default.
- W4378652807 cites W2129881276 @default.
- W4378652807 cites W2132101829 @default.
- W4378652807 cites W2133644385 @default.
- W4378652807 cites W2133980572 @default.
- W4378652807 cites W2134053180 @default.
- W4378652807 cites W2152328307 @default.
- W4378652807 cites W2153653511 @default.
- W4378652807 cites W2154613410 @default.
- W4378652807 cites W2159283978 @default.
- W4378652807 cites W2164364925 @default.
- W4378652807 cites W2166179062 @default.
- W4378652807 cites W2166921679 @default.
- W4378652807 cites W2167738800 @default.
- W4378652807 cites W2175892052 @default.
- W4378652807 cites W2319381398 @default.
- W4378652807 cites W2320567042 @default.
- W4378652807 cites W2333816553 @default.
- W4378652807 cites W2338256217 @default.
- W4378652807 cites W2360752271 @default.
- W4378652807 cites W2395489634 @default.
- W4378652807 cites W2480916349 @default.
- W4378652807 cites W2738540096 @default.
- W4378652807 cites W2771016211 @default.
- W4378652807 cites W2884980800 @default.
- W4378652807 cites W2892012176 @default.
- W4378652807 cites W2892377790 @default.
- W4378652807 cites W2909208846 @default.
- W4378652807 cites W2914495484 @default.
- W4378652807 cites W2966363656 @default.
- W4378652807 cites W2966569611 @default.
- W4378652807 cites W2967869829 @default.
- W4378652807 cites W2968310455 @default.
- W4378652807 cites W2989878698 @default.
- W4378652807 cites W2991483425 @default.
- W4378652807 cites W2994420163 @default.
- W4378652807 cites W2999748370 @default.
- W4378652807 cites W3034847226 @default.
- W4378652807 cites W3036682222 @default.
- W4378652807 cites W3038712967 @default.
- W4378652807 cites W3134393243 @default.
- W4378652807 cites W3149389014 @default.
- W4378652807 cites W3184383063 @default.
- W4378652807 cites W3201144820 @default.
- W4378652807 cites W4200006445 @default.
- W4378652807 cites W4205180141 @default.
- W4378652807 cites W4210933586 @default.
- W4378652807 cites W4211010233 @default.
- W4378652807 cites W4214650302 @default.
- W4378652807 cites W4221036356 @default.
- W4378652807 cites W4281740152 @default.
- W4378652807 cites W4281765149 @default.
- W4378652807 doi "https://doi.org/10.1111/fwb.14110" @default.