Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378673203> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4378673203 endingPage "488" @default.
- W4378673203 startingPage "479" @default.
- W4378673203 abstract "Traffic accident density prediction is an significant topic of road safety. This study uses some data in the census tracts in California to develop traffic accident density models using two different modeling approaches. In this paper, the dependent variable was the density of traffic crash which is a measure of the relative distribution of traffic crashes. The random forest regression was used to predict crash density. But many machine learning models like this are like a black-box, which can’t find the causal relationship between features and targets. For many practical problems, it is often more important to explain why a phenomenon happens than improving the model’s predictability. As a result, differed from pure predictive study, the generalized additive model (GAM) was introduced which was an interpretable statistical model to achieve explanatory analysis. The GAM explores which independent variables will have an impact on response variables and the extent of their impact. Thus, the traffic accident density prediction of this practical problem has more credibility analysis." @default.
- W4378673203 created "2023-05-30" @default.
- W4378673203 creator A5002422731 @default.
- W4378673203 creator A5047581480 @default.
- W4378673203 creator A5092044356 @default.
- W4378673203 date "2023-05-21" @default.
- W4378673203 modified "2023-10-05" @default.
- W4378673203 title "Traffic Accident Density Prediction Considering Injury Severity Based on Random Forest and GAM" @default.
- W4378673203 cites W2067353226 @default.
- W4378673203 cites W2216946510 @default.
- W4378673203 cites W2758914739 @default.
- W4378673203 cites W2769153038 @default.
- W4378673203 cites W2792545433 @default.
- W4378673203 cites W2889331935 @default.
- W4378673203 cites W2899037650 @default.
- W4378673203 cites W2944824350 @default.
- W4378673203 cites W2968932472 @default.
- W4378673203 cites W2974061428 @default.
- W4378673203 cites W3157099140 @default.
- W4378673203 cites W3196351888 @default.
- W4378673203 cites W4211116959 @default.
- W4378673203 doi "https://doi.org/10.54097/hset.v49i.8598" @default.
- W4378673203 hasPublicationYear "2023" @default.
- W4378673203 type Work @default.
- W4378673203 citedByCount "0" @default.
- W4378673203 crossrefType "journal-article" @default.
- W4378673203 hasAuthorship W4378673203A5002422731 @default.
- W4378673203 hasAuthorship W4378673203A5047581480 @default.
- W4378673203 hasAuthorship W4378673203A5092044356 @default.
- W4378673203 hasBestOaLocation W43786732031 @default.
- W4378673203 hasConcept C105795698 @default.
- W4378673203 hasConcept C111472728 @default.
- W4378673203 hasConcept C119857082 @default.
- W4378673203 hasConcept C138885662 @default.
- W4378673203 hasConcept C149782125 @default.
- W4378673203 hasConcept C152877465 @default.
- W4378673203 hasConcept C169258074 @default.
- W4378673203 hasConcept C17744445 @default.
- W4378673203 hasConcept C183469790 @default.
- W4378673203 hasConcept C194648359 @default.
- W4378673203 hasConcept C197640229 @default.
- W4378673203 hasConcept C199360897 @default.
- W4378673203 hasConcept C199539241 @default.
- W4378673203 hasConcept C2780224610 @default.
- W4378673203 hasConcept C2780289543 @default.
- W4378673203 hasConcept C33923547 @default.
- W4378673203 hasConcept C41008148 @default.
- W4378673203 hasConcept C41587187 @default.
- W4378673203 hasConcept C45804977 @default.
- W4378673203 hasConceptScore W4378673203C105795698 @default.
- W4378673203 hasConceptScore W4378673203C111472728 @default.
- W4378673203 hasConceptScore W4378673203C119857082 @default.
- W4378673203 hasConceptScore W4378673203C138885662 @default.
- W4378673203 hasConceptScore W4378673203C149782125 @default.
- W4378673203 hasConceptScore W4378673203C152877465 @default.
- W4378673203 hasConceptScore W4378673203C169258074 @default.
- W4378673203 hasConceptScore W4378673203C17744445 @default.
- W4378673203 hasConceptScore W4378673203C183469790 @default.
- W4378673203 hasConceptScore W4378673203C194648359 @default.
- W4378673203 hasConceptScore W4378673203C197640229 @default.
- W4378673203 hasConceptScore W4378673203C199360897 @default.
- W4378673203 hasConceptScore W4378673203C199539241 @default.
- W4378673203 hasConceptScore W4378673203C2780224610 @default.
- W4378673203 hasConceptScore W4378673203C2780289543 @default.
- W4378673203 hasConceptScore W4378673203C33923547 @default.
- W4378673203 hasConceptScore W4378673203C41008148 @default.
- W4378673203 hasConceptScore W4378673203C41587187 @default.
- W4378673203 hasConceptScore W4378673203C45804977 @default.
- W4378673203 hasLocation W43786732031 @default.
- W4378673203 hasOpenAccess W4378673203 @default.
- W4378673203 hasPrimaryLocation W43786732031 @default.
- W4378673203 hasRelatedWork W1999375707 @default.
- W4378673203 hasRelatedWork W2030822492 @default.
- W4378673203 hasRelatedWork W2132224557 @default.
- W4378673203 hasRelatedWork W2166977952 @default.
- W4378673203 hasRelatedWork W2182798365 @default.
- W4378673203 hasRelatedWork W2253693160 @default.
- W4378673203 hasRelatedWork W3021457118 @default.
- W4378673203 hasRelatedWork W3043432080 @default.
- W4378673203 hasRelatedWork W4307473630 @default.
- W4378673203 hasRelatedWork W565359331 @default.
- W4378673203 hasVolume "49" @default.
- W4378673203 isParatext "false" @default.
- W4378673203 isRetracted "false" @default.
- W4378673203 workType "article" @default.