Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378675551> ?p ?o ?g. }
- W4378675551 endingPage "122944" @default.
- W4378675551 startingPage "122944" @default.
- W4378675551 abstract "Oxidative desulfurization (ODS) of diesel fuels has received attention in recent years due to mild working conditions and effective removal of the aromatic sulfur compounds. There is a need for rapid, accurate, and reproducible analytical tools to monitor the performance of ODS systems. During the ODS process, sulfur compounds are oxidized to their corresponding sulfones which are easily removed by extraction in polar solvents. The amount of extracted sulfones is a reliable indicator of ODS performance, showing both oxidation and extraction efficiency. This article studies the ability of a non-parametric regression algorithm, principal component analysis-multivariate adaptive regression splines (PCA-MARS) as an alternative to back propagation artificial neural network (BP-ANN) to predict the concentration of sulfone removed during the ODS process. Using PCA, variables were compressed to identify principal components (PCs) that best described the data matrix, and the scores of such PCs were used as input variables for the MARS and ANN algorithms. The coefficient of determination in calibration (R2c), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were calculated for PCA-BP-ANN (R2c=0.9913, RMSEC=2.4206 and RMSEP=5.7124) and PCA-MARS (R2c=0.9841, RMSEC=2.7934 and RMSEP=5.8476) models and were compared with the genetic algorithm partial least squares (GA-PLS) (R2c=0.9472, RMSEC=5.5226 and RMSEP=9.6417) and as the results reveal, both methods are better than GA-PLS in terms of prediction accuracy. The proposed PCA-MARS and PCA-BP-ANN models are robust models that provide similar predictions and can be effectively used to predict sulfone containing samples. The MARS algorithm builds a flexible model using simpler linear regression and is computationally more efficient than BPNN due to data-driven stepwise search, addition, and pruning." @default.
- W4378675551 created "2023-05-30" @default.
- W4378675551 creator A5008907262 @default.
- W4378675551 creator A5026675193 @default.
- W4378675551 date "2023-11-01" @default.
- W4378675551 modified "2023-10-02" @default.
- W4378675551 title "Principal component analysis–multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy" @default.
- W4378675551 cites W133352569 @default.
- W4378675551 cites W1967537850 @default.
- W4378675551 cites W2015842042 @default.
- W4378675551 cites W2017046409 @default.
- W4378675551 cites W2025012426 @default.
- W4378675551 cites W2025299343 @default.
- W4378675551 cites W2029393800 @default.
- W4378675551 cites W2033197108 @default.
- W4378675551 cites W2035736478 @default.
- W4378675551 cites W2044698683 @default.
- W4378675551 cites W2070638918 @default.
- W4378675551 cites W2097327274 @default.
- W4378675551 cites W2114975564 @default.
- W4378675551 cites W2216444323 @default.
- W4378675551 cites W2233419805 @default.
- W4378675551 cites W2317654781 @default.
- W4378675551 cites W2460947618 @default.
- W4378675551 cites W2484544328 @default.
- W4378675551 cites W2553649089 @default.
- W4378675551 cites W2609234670 @default.
- W4378675551 cites W2802620160 @default.
- W4378675551 cites W2899878609 @default.
- W4378675551 cites W2913355945 @default.
- W4378675551 cites W2955190325 @default.
- W4378675551 cites W2966311710 @default.
- W4378675551 cites W3003401083 @default.
- W4378675551 cites W3005468002 @default.
- W4378675551 cites W3007218518 @default.
- W4378675551 cites W3009659961 @default.
- W4378675551 cites W3052462353 @default.
- W4378675551 cites W3111736454 @default.
- W4378675551 cites W4249545506 @default.
- W4378675551 cites W586129503 @default.
- W4378675551 doi "https://doi.org/10.1016/j.saa.2023.122944" @default.
- W4378675551 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37269660" @default.
- W4378675551 hasPublicationYear "2023" @default.
- W4378675551 type Work @default.
- W4378675551 citedByCount "3" @default.
- W4378675551 countsByYear W43786755512023 @default.
- W4378675551 crossrefType "journal-article" @default.
- W4378675551 hasAuthorship W4378675551A5008907262 @default.
- W4378675551 hasAuthorship W4378675551A5026675193 @default.
- W4378675551 hasConcept C105795698 @default.
- W4378675551 hasConcept C121332964 @default.
- W4378675551 hasConcept C1276947 @default.
- W4378675551 hasConcept C139945424 @default.
- W4378675551 hasConcept C153180895 @default.
- W4378675551 hasConcept C154945302 @default.
- W4378675551 hasConcept C165838908 @default.
- W4378675551 hasConcept C186060115 @default.
- W4378675551 hasConcept C22354355 @default.
- W4378675551 hasConcept C27438332 @default.
- W4378675551 hasConcept C33923547 @default.
- W4378675551 hasConcept C41008148 @default.
- W4378675551 hasConcept C44882253 @default.
- W4378675551 hasConcept C50644808 @default.
- W4378675551 hasConcept C74127309 @default.
- W4378675551 hasConcept C74887250 @default.
- W4378675551 hasConcept C83260615 @default.
- W4378675551 hasConcept C83546350 @default.
- W4378675551 hasConcept C86803240 @default.
- W4378675551 hasConceptScore W4378675551C105795698 @default.
- W4378675551 hasConceptScore W4378675551C121332964 @default.
- W4378675551 hasConceptScore W4378675551C1276947 @default.
- W4378675551 hasConceptScore W4378675551C139945424 @default.
- W4378675551 hasConceptScore W4378675551C153180895 @default.
- W4378675551 hasConceptScore W4378675551C154945302 @default.
- W4378675551 hasConceptScore W4378675551C165838908 @default.
- W4378675551 hasConceptScore W4378675551C186060115 @default.
- W4378675551 hasConceptScore W4378675551C22354355 @default.
- W4378675551 hasConceptScore W4378675551C27438332 @default.
- W4378675551 hasConceptScore W4378675551C33923547 @default.
- W4378675551 hasConceptScore W4378675551C41008148 @default.
- W4378675551 hasConceptScore W4378675551C44882253 @default.
- W4378675551 hasConceptScore W4378675551C50644808 @default.
- W4378675551 hasConceptScore W4378675551C74127309 @default.
- W4378675551 hasConceptScore W4378675551C74887250 @default.
- W4378675551 hasConceptScore W4378675551C83260615 @default.
- W4378675551 hasConceptScore W4378675551C83546350 @default.
- W4378675551 hasConceptScore W4378675551C86803240 @default.
- W4378675551 hasFunder F4320322243 @default.
- W4378675551 hasLocation W43786755511 @default.
- W4378675551 hasLocation W43786755512 @default.
- W4378675551 hasOpenAccess W4378675551 @default.
- W4378675551 hasPrimaryLocation W43786755511 @default.
- W4378675551 hasRelatedWork W1496127902 @default.
- W4378675551 hasRelatedWork W2000256182 @default.
- W4378675551 hasRelatedWork W2057527240 @default.
- W4378675551 hasRelatedWork W2150870431 @default.
- W4378675551 hasRelatedWork W2389328060 @default.
- W4378675551 hasRelatedWork W4283750919 @default.