Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378700648> ?p ?o ?g. }
- W4378700648 endingPage "107891" @default.
- W4378700648 startingPage "107891" @default.
- W4378700648 abstract "Pre- and post-harvest stages are rarely considered together in modeling studies of fruit quality and disease development, despite evident connections between these two fruit life stages in terms of underlying processes. In order to fill this gap, a new modeling framework has been introduced to simulate the effects of pre-harvest practices (irrigation regime and fruit thinning intensity) and storage conditions (temperature and relative humidity) on the development of fruit quality traits during the growing season and storage, fruit yield, and the appearance of brown rot infections during storage. The model was specifically built and calibrated for nectarine (Prunus persica var. nucipersica). A set of performance criteria was defined based on model outputs describing fruit quality (fruit size and sweetness), yield and fruit loss during storage (caused by excessive mass loss or brown rot infections). A sensitivity analysis was then carried out to study the relationships between performance criteria and pre-harvest practices and storage conditions. Finally, the model was used in combination with an optimization algorithm to retrieve the pre- and post-harvest scenarios that maximized fruit quality and quantity, aggregated into a unique performance score. This was done for different storage times and the relative importance assigned to fruit quality criteria. The results revealed that irrigation regime and thinning intensity were significant in defining fruit quality traits, while storage conditions influenced fruit loss during storage. The interactions between pre- and post-harvest conditions were also found to be important when considering the fruit loss related to brown rot infections and the fruit yield at the end of storage. The importance assigned to quality criteria largely affected the optimization outcomes. Thus, the best scenario had moderate water deficit and a low-to-medium thinning intensity when the importance of the fruit sweetness index was high, and well-irrigated regimes and very low thinning intensity when it was lower. The results also indicated a trade-off between quality criteria and, in particular, sweetness and fruit yield. The proposed modeling framework highlighted the fact that the pre- and post-harvest conditions should be considered together because they can influence both fruit quality and quantity, including fruit loss due to brown rot. The model could therefore be used as a tool to enhance dialogue between fruit supply chain actors and to identify solutions to meet their expectations." @default.
- W4378700648 created "2023-05-30" @default.
- W4378700648 creator A5007361096 @default.
- W4378700648 creator A5036904561 @default.
- W4378700648 creator A5037352339 @default.
- W4378700648 creator A5054939776 @default.
- W4378700648 creator A5058916042 @default.
- W4378700648 creator A5076018832 @default.
- W4378700648 creator A5087302382 @default.
- W4378700648 date "2023-07-01" @default.
- W4378700648 modified "2023-09-30" @default.
- W4378700648 title "Synergy between pre-harvest practices and storage conditions to achieve good quality nectarines and prevent brown rot losses during storage: A modeling framework" @default.
- W4378700648 cites W1514919610 @default.
- W4378700648 cites W173248351 @default.
- W4378700648 cites W1970811868 @default.
- W4378700648 cites W1971855668 @default.
- W4378700648 cites W1974875296 @default.
- W4378700648 cites W1991799622 @default.
- W4378700648 cites W1993294688 @default.
- W4378700648 cites W2008198273 @default.
- W4378700648 cites W2009498786 @default.
- W4378700648 cites W2011757774 @default.
- W4378700648 cites W2024111335 @default.
- W4378700648 cites W2029396152 @default.
- W4378700648 cites W2030307359 @default.
- W4378700648 cites W2050000800 @default.
- W4378700648 cites W2057965089 @default.
- W4378700648 cites W2061414838 @default.
- W4378700648 cites W2067104763 @default.
- W4378700648 cites W2109066020 @default.
- W4378700648 cites W2112775420 @default.
- W4378700648 cites W2135299734 @default.
- W4378700648 cites W2144260204 @default.
- W4378700648 cites W2162083444 @default.
- W4378700648 cites W2162283113 @default.
- W4378700648 cites W2164307410 @default.
- W4378700648 cites W2169876309 @default.
- W4378700648 cites W2171149164 @default.
- W4378700648 cites W2181548820 @default.
- W4378700648 cites W2265785390 @default.
- W4378700648 cites W2320655300 @default.
- W4378700648 cites W2320842973 @default.
- W4378700648 cites W2346563623 @default.
- W4378700648 cites W2583794503 @default.
- W4378700648 cites W2605745146 @default.
- W4378700648 cites W2613225688 @default.
- W4378700648 cites W2781857168 @default.
- W4378700648 cites W2792827522 @default.
- W4378700648 cites W2800529315 @default.
- W4378700648 cites W2802060062 @default.
- W4378700648 cites W2945542028 @default.
- W4378700648 cites W2950403102 @default.
- W4378700648 cites W2999699150 @default.
- W4378700648 cites W3009892429 @default.
- W4378700648 cites W3091029305 @default.
- W4378700648 cites W3096621557 @default.
- W4378700648 cites W3114092936 @default.
- W4378700648 cites W3119465731 @default.
- W4378700648 cites W3126099247 @default.
- W4378700648 cites W3208184630 @default.
- W4378700648 cites W3215325392 @default.
- W4378700648 cites W3215700318 @default.
- W4378700648 cites W4205172503 @default.
- W4378700648 cites W4210593034 @default.
- W4378700648 cites W4221117790 @default.
- W4378700648 cites W4224244044 @default.
- W4378700648 cites W4241793634 @default.
- W4378700648 cites W4242130458 @default.
- W4378700648 cites W4289516210 @default.
- W4378700648 cites W4311968174 @default.
- W4378700648 cites W578648360 @default.
- W4378700648 doi "https://doi.org/10.1016/j.compag.2023.107891" @default.
- W4378700648 hasPublicationYear "2023" @default.
- W4378700648 type Work @default.
- W4378700648 citedByCount "0" @default.
- W4378700648 crossrefType "journal-article" @default.
- W4378700648 hasAuthorship W4378700648A5007361096 @default.
- W4378700648 hasAuthorship W4378700648A5036904561 @default.
- W4378700648 hasAuthorship W4378700648A5037352339 @default.
- W4378700648 hasAuthorship W4378700648A5054939776 @default.
- W4378700648 hasAuthorship W4378700648A5058916042 @default.
- W4378700648 hasAuthorship W4378700648A5076018832 @default.
- W4378700648 hasAuthorship W4378700648A5087302382 @default.
- W4378700648 hasConcept C127413603 @default.
- W4378700648 hasConcept C134121241 @default.
- W4378700648 hasConcept C144027150 @default.
- W4378700648 hasConcept C157670687 @default.
- W4378700648 hasConcept C18903297 @default.
- W4378700648 hasConcept C191897082 @default.
- W4378700648 hasConcept C192562407 @default.
- W4378700648 hasConcept C2777108408 @default.
- W4378700648 hasConcept C2779476700 @default.
- W4378700648 hasConcept C2779692143 @default.
- W4378700648 hasConcept C2781353100 @default.
- W4378700648 hasConcept C2988529969 @default.
- W4378700648 hasConcept C31903555 @default.
- W4378700648 hasConcept C33923547 @default.
- W4378700648 hasConcept C39432304 @default.