Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378713685> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4378713685 endingPage "1" @default.
- W4378713685 startingPage "1" @default.
- W4378713685 abstract "To better monitor and control distribution grids, the exact knowledge of system topology and parameters is a fundamental requirement. However, topology information is usually incomplete due to limited sensors in the grid. Therefore, estimating the system parameters using partial data is a critical topic for distribution systems. Due to the high nonlinearity of unobservable system quantities and noises, Deep Neural Networks (DNNs) are widely utilized for accurate estimation. While traditional approaches either treat DNNs as a black box or embed little physical knowledge into DNNs, they cannot guarantee that the DNN model is consistent with physical equations and hence lack accuracy and interpretability. Therefore, we propose a Deep-Shallow neural Network (DSN) for distribution system estimation. The key is to create virtual nodes to represent nodes without sensors in the system, and denote a DNN to approximate missing quantities at virtual nodes. Then, the Power Flow (PF) equations can be estimated via a shallow neural network, achieving physical consistency. Isolated by virtual nodes, the whole system is decomposed into a set of reduced graphs with approximate PF equations. Likewise, we introduce a Reinforcement Learning-based search algorithm to connect the reduced grids into one connected system. Correspondingly, the DSN is fine-tuned to achieve consistency with the PF equations of the connected graph. Finally, the paper illustrates the superiority of the proposed DSN due to its physical consistency. Specifically, comprehensive experiments demonstrate the high performances of our DSN over other methods in distribution grids." @default.
- W4378713685 created "2023-05-30" @default.
- W4378713685 creator A5021106309 @default.
- W4378713685 creator A5023894377 @default.
- W4378713685 creator A5086161494 @default.
- W4378713685 creator A5090492751 @default.
- W4378713685 date "2023-01-01" @default.
- W4378713685 modified "2023-10-14" @default.
- W4378713685 title "Distribution Grid Topology and Parameter Estimation Using Deep-Shallow Neural Network with Physical Consistency" @default.
- W4378713685 doi "https://doi.org/10.1109/tsg.2023.3278702" @default.
- W4378713685 hasPublicationYear "2023" @default.
- W4378713685 type Work @default.
- W4378713685 citedByCount "0" @default.
- W4378713685 crossrefType "journal-article" @default.
- W4378713685 hasAuthorship W4378713685A5021106309 @default.
- W4378713685 hasAuthorship W4378713685A5023894377 @default.
- W4378713685 hasAuthorship W4378713685A5086161494 @default.
- W4378713685 hasAuthorship W4378713685A5090492751 @default.
- W4378713685 hasBestOaLocation W43787136851 @default.
- W4378713685 hasConcept C111919701 @default.
- W4378713685 hasConcept C114614502 @default.
- W4378713685 hasConcept C116672817 @default.
- W4378713685 hasConcept C121332964 @default.
- W4378713685 hasConcept C127413603 @default.
- W4378713685 hasConcept C146978453 @default.
- W4378713685 hasConcept C154945302 @default.
- W4378713685 hasConcept C158622935 @default.
- W4378713685 hasConcept C184720557 @default.
- W4378713685 hasConcept C187107819 @default.
- W4378713685 hasConcept C199845137 @default.
- W4378713685 hasConcept C2776436953 @default.
- W4378713685 hasConcept C2781067378 @default.
- W4378713685 hasConcept C29829512 @default.
- W4378713685 hasConcept C33923547 @default.
- W4378713685 hasConcept C41008148 @default.
- W4378713685 hasConcept C50644808 @default.
- W4378713685 hasConcept C62520636 @default.
- W4378713685 hasConcept C80444323 @default.
- W4378713685 hasConceptScore W4378713685C111919701 @default.
- W4378713685 hasConceptScore W4378713685C114614502 @default.
- W4378713685 hasConceptScore W4378713685C116672817 @default.
- W4378713685 hasConceptScore W4378713685C121332964 @default.
- W4378713685 hasConceptScore W4378713685C127413603 @default.
- W4378713685 hasConceptScore W4378713685C146978453 @default.
- W4378713685 hasConceptScore W4378713685C154945302 @default.
- W4378713685 hasConceptScore W4378713685C158622935 @default.
- W4378713685 hasConceptScore W4378713685C184720557 @default.
- W4378713685 hasConceptScore W4378713685C187107819 @default.
- W4378713685 hasConceptScore W4378713685C199845137 @default.
- W4378713685 hasConceptScore W4378713685C2776436953 @default.
- W4378713685 hasConceptScore W4378713685C2781067378 @default.
- W4378713685 hasConceptScore W4378713685C29829512 @default.
- W4378713685 hasConceptScore W4378713685C33923547 @default.
- W4378713685 hasConceptScore W4378713685C41008148 @default.
- W4378713685 hasConceptScore W4378713685C50644808 @default.
- W4378713685 hasConceptScore W4378713685C62520636 @default.
- W4378713685 hasConceptScore W4378713685C80444323 @default.
- W4378713685 hasFunder F4320308154 @default.
- W4378713685 hasFunder F4320318947 @default.
- W4378713685 hasFunder F4320338279 @default.
- W4378713685 hasLocation W43787136851 @default.
- W4378713685 hasOpenAccess W4378713685 @default.
- W4378713685 hasPrimaryLocation W43787136851 @default.
- W4378713685 hasRelatedWork W2055980218 @default.
- W4378713685 hasRelatedWork W2169502841 @default.
- W4378713685 hasRelatedWork W2326002844 @default.
- W4378713685 hasRelatedWork W2353865532 @default.
- W4378713685 hasRelatedWork W2386387936 @default.
- W4378713685 hasRelatedWork W2745742138 @default.
- W4378713685 hasRelatedWork W2899217644 @default.
- W4378713685 hasRelatedWork W3021665866 @default.
- W4378713685 hasRelatedWork W3036194310 @default.
- W4378713685 hasRelatedWork W4320024845 @default.
- W4378713685 isParatext "false" @default.
- W4378713685 isRetracted "false" @default.
- W4378713685 workType "article" @default.