Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378714747> ?p ?o ?g. }
- W4378714747 endingPage "5165" @default.
- W4378714747 startingPage "5165" @default.
- W4378714747 abstract "The impact of micro-level people’s activities on urban macro-level indicators is a complex question that has been the subject of much interest among researchers and policymakers. Transportation preferences, consumption habits, communication patterns and other individual-level activities can significantly impact large-scale urban characteristics, such as the potential for innovation generation of the city. Conversely, large-scale urban characteristics can also constrain and determine the activities of their inhabitants. Therefore, understanding the interdependence and mutual reinforcement between micro- and macro-level factors is critical to defining effective public policies. The increasing availability of digital data sources, such as social media and mobile phones, has opened up new opportunities for the quantitative study of this interdependency. This paper aims to detect meaningful city clusters on the basis of a detailed analysis of the spatiotemporal activity patterns for each city. The study is carried out on a worldwide city dataset of spatiotemporal activity patterns obtained from geotagged social media data. Clustering features are obtained from unsupervised topic analyses of activity patterns. Our study compares state-of-the-art clustering models, selecting the model achieving a 2.7% greater Silhouette Score than the next-best model. Three well-separated city clusters are identified. Additionally, the study of the distribution of the City Innovation Index over these three city clusters shows discrimination of low performing from high performing cities relative to innovation. Low performing cities are identified in one well-separated cluster. Therefore, it is possible to correlate micro-scale individual-level activities to large-scale urban characteristics." @default.
- W4378714747 created "2023-05-30" @default.
- W4378714747 creator A5013959907 @default.
- W4378714747 creator A5070585626 @default.
- W4378714747 creator A5091424899 @default.
- W4378714747 date "2023-05-29" @default.
- W4378714747 modified "2023-09-26" @default.
- W4378714747 title "Clustering Cities over Features Extracted from Multiple Virtual Sensors Measuring Micro-Level Activity Patterns Allows One to Discriminate Large-Scale City Characteristics" @default.
- W4378714747 cites W1413926284 @default.
- W4378714747 cites W1597511597 @default.
- W4378714747 cites W1972853209 @default.
- W4378714747 cites W1978220319 @default.
- W4378714747 cites W1994295806 @default.
- W4378714747 cites W2018277822 @default.
- W4378714747 cites W2020394509 @default.
- W4378714747 cites W2028033058 @default.
- W4378714747 cites W2054061475 @default.
- W4378714747 cites W2071702404 @default.
- W4378714747 cites W2079421249 @default.
- W4378714747 cites W2080678433 @default.
- W4378714747 cites W2097550172 @default.
- W4378714747 cites W2103388840 @default.
- W4378714747 cites W2110953678 @default.
- W4378714747 cites W2113505907 @default.
- W4378714747 cites W2180032114 @default.
- W4378714747 cites W2276445839 @default.
- W4378714747 cites W2531072308 @default.
- W4378714747 cites W2549606280 @default.
- W4378714747 cites W2787641251 @default.
- W4378714747 cites W2896443764 @default.
- W4378714747 cites W2903266193 @default.
- W4378714747 cites W2904946774 @default.
- W4378714747 cites W2905872491 @default.
- W4378714747 cites W2962901729 @default.
- W4378714747 cites W2964107367 @default.
- W4378714747 cites W3005509211 @default.
- W4378714747 cites W3044583959 @default.
- W4378714747 cites W3044595982 @default.
- W4378714747 cites W3096393000 @default.
- W4378714747 cites W3103644395 @default.
- W4378714747 cites W3119560152 @default.
- W4378714747 cites W3123653290 @default.
- W4378714747 cites W3127797861 @default.
- W4378714747 cites W3165318148 @default.
- W4378714747 cites W3172683270 @default.
- W4378714747 cites W3203434175 @default.
- W4378714747 cites W3217429409 @default.
- W4378714747 cites W4210289989 @default.
- W4378714747 cites W4236516342 @default.
- W4378714747 cites W4254618959 @default.
- W4378714747 cites W4281660291 @default.
- W4378714747 cites W4300170427 @default.
- W4378714747 cites W4307348152 @default.
- W4378714747 cites W4323074167 @default.
- W4378714747 cites W772827274 @default.
- W4378714747 doi "https://doi.org/10.3390/s23115165" @default.
- W4378714747 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37299891" @default.
- W4378714747 hasPublicationYear "2023" @default.
- W4378714747 type Work @default.
- W4378714747 citedByCount "0" @default.
- W4378714747 crossrefType "journal-article" @default.
- W4378714747 hasAuthorship W4378714747A5013959907 @default.
- W4378714747 hasAuthorship W4378714747A5070585626 @default.
- W4378714747 hasAuthorship W4378714747A5091424899 @default.
- W4378714747 hasBestOaLocation W43787147471 @default.
- W4378714747 hasConcept C136764020 @default.
- W4378714747 hasConcept C154945302 @default.
- W4378714747 hasConcept C164866538 @default.
- W4378714747 hasConcept C166955791 @default.
- W4378714747 hasConcept C17744445 @default.
- W4378714747 hasConcept C185874996 @default.
- W4378714747 hasConcept C199360897 @default.
- W4378714747 hasConcept C199539241 @default.
- W4378714747 hasConcept C205649164 @default.
- W4378714747 hasConcept C2522767166 @default.
- W4378714747 hasConcept C2778755073 @default.
- W4378714747 hasConcept C41008148 @default.
- W4378714747 hasConcept C518677369 @default.
- W4378714747 hasConcept C58103923 @default.
- W4378714747 hasConcept C58640448 @default.
- W4378714747 hasConcept C73555534 @default.
- W4378714747 hasConceptScore W4378714747C136764020 @default.
- W4378714747 hasConceptScore W4378714747C154945302 @default.
- W4378714747 hasConceptScore W4378714747C164866538 @default.
- W4378714747 hasConceptScore W4378714747C166955791 @default.
- W4378714747 hasConceptScore W4378714747C17744445 @default.
- W4378714747 hasConceptScore W4378714747C185874996 @default.
- W4378714747 hasConceptScore W4378714747C199360897 @default.
- W4378714747 hasConceptScore W4378714747C199539241 @default.
- W4378714747 hasConceptScore W4378714747C205649164 @default.
- W4378714747 hasConceptScore W4378714747C2522767166 @default.
- W4378714747 hasConceptScore W4378714747C2778755073 @default.
- W4378714747 hasConceptScore W4378714747C41008148 @default.
- W4378714747 hasConceptScore W4378714747C518677369 @default.
- W4378714747 hasConceptScore W4378714747C58103923 @default.
- W4378714747 hasConceptScore W4378714747C58640448 @default.
- W4378714747 hasConceptScore W4378714747C73555534 @default.
- W4378714747 hasIssue "11" @default.