Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378717201> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4378717201 endingPage "55379" @default.
- W4378717201 startingPage "55370" @default.
- W4378717201 abstract "Internet of Things (IoT) devices are becoming increasingly ubiquitous in daily life. They are utilized in various sectors like healthcare, manufacturing, and transportation. The main challenges related to IoT devices are the potential for faults to occur and their reliability. In classical IoT fault detection, the client device must upload raw information to the central server for the training model, which can reveal sensitive business information. Blockchain (BC) technology and a fault detection algorithm are applied to overcome these challenges. Generally, the fusion of BC technology and fault detection algorithms can give a secure and more reliable IoT ecosystem. Therefore, this study develops a new Blockchain Assisted Data Edge Verification with Consensus Algorithm for Machine Learning (BDEV-CAML) technique for IoT Fault Detection purposes. The presented BDEV-CAML technique integrates the benefits of blockchain, IoT, and ML models to enhance the IoT network’s trustworthiness, efficacy, and security. In BC technology, IoT devices that possess a significant level of decentralized decision-making capability can attain a consensus on the efficiency of intrablock transactions. For fault detection in the IoT network, the deep directional gated recurrent unit (DBiGRU) model is used. Finally, the African vulture optimization algorithm (AVOA) technique is utilized for the optimal hyperparameter tuning of the DBiGRU model, which helps in improving the fault detection rate. A detailed set of experiments were carried out to highlight the enhanced performance of the BDEV-CAML algorithm. The comprehensive experimental results stated the improved performance of the BDEV-CAML technique over other existing models with maximum accuracy of 99.6%." @default.
- W4378717201 created "2023-05-30" @default.
- W4378717201 creator A5003705422 @default.
- W4378717201 creator A5015970771 @default.
- W4378717201 creator A5032948428 @default.
- W4378717201 creator A5051147215 @default.
- W4378717201 creator A5053107720 @default.
- W4378717201 creator A5059843862 @default.
- W4378717201 date "2023-01-01" @default.
- W4378717201 modified "2023-10-18" @default.
- W4378717201 title "Blockchain Assisted Data Edge Verification With Consensus Algorithm for Machine Learning Assisted IoT" @default.
- W4378717201 cites W2982016319 @default.
- W4378717201 cites W3028787851 @default.
- W4378717201 cites W3082502178 @default.
- W4378717201 cites W3093606573 @default.
- W4378717201 cites W3095937110 @default.
- W4378717201 cites W3111264080 @default.
- W4378717201 cites W3165159705 @default.
- W4378717201 cites W3170615823 @default.
- W4378717201 cites W3177472232 @default.
- W4378717201 cites W3202645507 @default.
- W4378717201 cites W3214703554 @default.
- W4378717201 cites W4206345869 @default.
- W4378717201 cites W4210544759 @default.
- W4378717201 cites W4212772567 @default.
- W4378717201 cites W4212854674 @default.
- W4378717201 cites W4226435934 @default.
- W4378717201 cites W4252741040 @default.
- W4378717201 cites W4285278513 @default.
- W4378717201 cites W4292481426 @default.
- W4378717201 cites W4295872969 @default.
- W4378717201 cites W4303684738 @default.
- W4378717201 cites W4303856637 @default.
- W4378717201 cites W4313127226 @default.
- W4378717201 cites W4313529495 @default.
- W4378717201 cites W4316664256 @default.
- W4378717201 cites W4322500317 @default.
- W4378717201 doi "https://doi.org/10.1109/access.2023.3280798" @default.
- W4378717201 hasPublicationYear "2023" @default.
- W4378717201 type Work @default.
- W4378717201 citedByCount "3" @default.
- W4378717201 countsByYear W43787172012023 @default.
- W4378717201 crossrefType "journal-article" @default.
- W4378717201 hasAuthorship W4378717201A5003705422 @default.
- W4378717201 hasAuthorship W4378717201A5015970771 @default.
- W4378717201 hasAuthorship W4378717201A5032948428 @default.
- W4378717201 hasAuthorship W4378717201A5051147215 @default.
- W4378717201 hasAuthorship W4378717201A5053107720 @default.
- W4378717201 hasAuthorship W4378717201A5059843862 @default.
- W4378717201 hasBestOaLocation W43787172011 @default.
- W4378717201 hasConcept C111919701 @default.
- W4378717201 hasConcept C11413529 @default.
- W4378717201 hasConcept C119857082 @default.
- W4378717201 hasConcept C120314980 @default.
- W4378717201 hasConcept C124101348 @default.
- W4378717201 hasConcept C152745839 @default.
- W4378717201 hasConcept C154945302 @default.
- W4378717201 hasConcept C162307627 @default.
- W4378717201 hasConcept C172707124 @default.
- W4378717201 hasConcept C2778456923 @default.
- W4378717201 hasConcept C2779687700 @default.
- W4378717201 hasConcept C38652104 @default.
- W4378717201 hasConcept C41008148 @default.
- W4378717201 hasConcept C71901391 @default.
- W4378717201 hasConceptScore W4378717201C111919701 @default.
- W4378717201 hasConceptScore W4378717201C11413529 @default.
- W4378717201 hasConceptScore W4378717201C119857082 @default.
- W4378717201 hasConceptScore W4378717201C120314980 @default.
- W4378717201 hasConceptScore W4378717201C124101348 @default.
- W4378717201 hasConceptScore W4378717201C152745839 @default.
- W4378717201 hasConceptScore W4378717201C154945302 @default.
- W4378717201 hasConceptScore W4378717201C162307627 @default.
- W4378717201 hasConceptScore W4378717201C172707124 @default.
- W4378717201 hasConceptScore W4378717201C2778456923 @default.
- W4378717201 hasConceptScore W4378717201C2779687700 @default.
- W4378717201 hasConceptScore W4378717201C38652104 @default.
- W4378717201 hasConceptScore W4378717201C41008148 @default.
- W4378717201 hasConceptScore W4378717201C71901391 @default.
- W4378717201 hasFunder F4320335489 @default.
- W4378717201 hasLocation W43787172011 @default.
- W4378717201 hasOpenAccess W4378717201 @default.
- W4378717201 hasPrimaryLocation W43787172011 @default.
- W4378717201 hasRelatedWork W2800642566 @default.
- W4378717201 hasRelatedWork W2945616868 @default.
- W4378717201 hasRelatedWork W3003380681 @default.
- W4378717201 hasRelatedWork W3010284296 @default.
- W4378717201 hasRelatedWork W3106610906 @default.
- W4378717201 hasRelatedWork W3116709161 @default.
- W4378717201 hasRelatedWork W3117321386 @default.
- W4378717201 hasRelatedWork W3197382768 @default.
- W4378717201 hasRelatedWork W4376106090 @default.
- W4378717201 hasRelatedWork W4381850543 @default.
- W4378717201 hasVolume "11" @default.
- W4378717201 isParatext "false" @default.
- W4378717201 isRetracted "false" @default.
- W4378717201 workType "article" @default.