Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378745253> ?p ?o ?g. }
- W4378745253 abstract "Abstract Pathogen detection from biological and environmental samples is important for global disease control. Despite advances in pathogen detection using deep learning, current algorithms have limitations in processing long genomic sequences. Through the deep cross-fusion of cross, residual and deep neural networks, we developed DCiPatho for accurate pathogen detection based on the integrated frequency features of 3-to-7 k-mers. Compared with the existing state-of-the-art algorithms, DCiPatho can be used to accurately identify distinct pathogenic bacteria infecting humans, animals and plants. We evaluated DCiPatho on both learned and unlearned pathogen species using both genomics and metagenomics datasets. DCiPatho is an effective tool for the genomic-scale identification of pathogens by integrating the frequency of k-mers into deep cross-fusion networks. The source code is publicly available at https://github.com/LorMeBioAI/DCiPatho." @default.
- W4378745253 created "2023-05-31" @default.
- W4378745253 creator A5012549475 @default.
- W4378745253 creator A5014741874 @default.
- W4378745253 creator A5017193147 @default.
- W4378745253 creator A5023836500 @default.
- W4378745253 creator A5031172391 @default.
- W4378745253 creator A5047284728 @default.
- W4378745253 creator A5054767122 @default.
- W4378745253 creator A5056646630 @default.
- W4378745253 creator A5061592897 @default.
- W4378745253 creator A5067482090 @default.
- W4378745253 creator A5077857361 @default.
- W4378745253 creator A5082363548 @default.
- W4378745253 date "2023-05-30" @default.
- W4378745253 modified "2023-10-14" @default.
- W4378745253 title "DCiPatho: deep cross-fusion networks for genome scale identification of pathogens" @default.
- W4378745253 cites W1835750348 @default.
- W4378745253 cites W2030717203 @default.
- W4378745253 cites W2112364185 @default.
- W4378745253 cites W2311607323 @default.
- W4378745253 cites W2475334473 @default.
- W4378745253 cites W2570535773 @default.
- W4378745253 cites W2590156219 @default.
- W4378745253 cites W2736280136 @default.
- W4378745253 cites W2767318416 @default.
- W4378745253 cites W2780712416 @default.
- W4378745253 cites W2793768763 @default.
- W4378745253 cites W2803509875 @default.
- W4378745253 cites W2896262061 @default.
- W4378745253 cites W2898604559 @default.
- W4378745253 cites W2899818496 @default.
- W4378745253 cites W2913500366 @default.
- W4378745253 cites W2918598256 @default.
- W4378745253 cites W2920083709 @default.
- W4378745253 cites W2950572599 @default.
- W4378745253 cites W2961729414 @default.
- W4378745253 cites W2968201070 @default.
- W4378745253 cites W3002262829 @default.
- W4378745253 cites W3014345701 @default.
- W4378745253 cites W3014810983 @default.
- W4378745253 cites W3023530394 @default.
- W4378745253 cites W3025472913 @default.
- W4378745253 cites W3049452180 @default.
- W4378745253 cites W3081278968 @default.
- W4378745253 cites W3090491025 @default.
- W4378745253 cites W3093218166 @default.
- W4378745253 cites W3099584446 @default.
- W4378745253 cites W3110681500 @default.
- W4378745253 cites W3112172360 @default.
- W4378745253 cites W3125850677 @default.
- W4378745253 cites W3128792544 @default.
- W4378745253 cites W3156669901 @default.
- W4378745253 cites W3165426002 @default.
- W4378745253 cites W3184635404 @default.
- W4378745253 cites W4206405364 @default.
- W4378745253 cites W4214943162 @default.
- W4378745253 cites W4225255896 @default.
- W4378745253 cites W4226175423 @default.
- W4378745253 cites W4293150093 @default.
- W4378745253 cites W4296779585 @default.
- W4378745253 cites W4297138475 @default.
- W4378745253 cites W4297263351 @default.
- W4378745253 cites W4315707395 @default.
- W4378745253 doi "https://doi.org/10.1093/bib/bbad194" @default.
- W4378745253 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37249547" @default.
- W4378745253 hasPublicationYear "2023" @default.
- W4378745253 type Work @default.
- W4378745253 citedByCount "0" @default.
- W4378745253 crossrefType "journal-article" @default.
- W4378745253 hasAuthorship W4378745253A5012549475 @default.
- W4378745253 hasAuthorship W4378745253A5014741874 @default.
- W4378745253 hasAuthorship W4378745253A5017193147 @default.
- W4378745253 hasAuthorship W4378745253A5023836500 @default.
- W4378745253 hasAuthorship W4378745253A5031172391 @default.
- W4378745253 hasAuthorship W4378745253A5047284728 @default.
- W4378745253 hasAuthorship W4378745253A5054767122 @default.
- W4378745253 hasAuthorship W4378745253A5056646630 @default.
- W4378745253 hasAuthorship W4378745253A5061592897 @default.
- W4378745253 hasAuthorship W4378745253A5067482090 @default.
- W4378745253 hasAuthorship W4378745253A5077857361 @default.
- W4378745253 hasAuthorship W4378745253A5082363548 @default.
- W4378745253 hasBestOaLocation W43787452531 @default.
- W4378745253 hasConcept C104317684 @default.
- W4378745253 hasConcept C108583219 @default.
- W4378745253 hasConcept C116834253 @default.
- W4378745253 hasConcept C141231307 @default.
- W4378745253 hasConcept C15151743 @default.
- W4378745253 hasConcept C154945302 @default.
- W4378745253 hasConcept C18903297 @default.
- W4378745253 hasConcept C189206191 @default.
- W4378745253 hasConcept C2776460866 @default.
- W4378745253 hasConcept C41008148 @default.
- W4378745253 hasConcept C54355233 @default.
- W4378745253 hasConcept C70721500 @default.
- W4378745253 hasConcept C86803240 @default.
- W4378745253 hasConceptScore W4378745253C104317684 @default.
- W4378745253 hasConceptScore W4378745253C108583219 @default.
- W4378745253 hasConceptScore W4378745253C116834253 @default.
- W4378745253 hasConceptScore W4378745253C141231307 @default.