Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378745905> ?p ?o ?g. }
- W4378745905 abstract "We propose that in order to harness our understanding of neuroscience toward machine learning, we must first have powerful tools for training brain-like models of learning. Although substantial progress has been made toward understanding the dynamics of learning in the brain, neuroscience-derived models of learning have yet to demonstrate the same performance capabilities as methods in deep learning such as gradient descent. Inspired by the successes of machine learning using gradient descent, we introduce a bi-level optimization framework that seeks to both solve online learning tasks and improve the ability to learn online using models of plasticity from neuroscience. We demonstrate that models of three-factor learning with synaptic plasticity taken from the neuroscience literature can be trained in Spiking Neural Networks (SNNs) with gradient descent via a framework of learning-to-learn to address challenging online learning problems. This framework opens a new path toward developing neuroscience inspired online learning algorithms." @default.
- W4378745905 created "2023-05-31" @default.
- W4378745905 creator A5074595426 @default.
- W4378745905 creator A5083720980 @default.
- W4378745905 date "2023-05-12" @default.
- W4378745905 modified "2023-09-30" @default.
- W4378745905 title "Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks" @default.
- W4378745905 cites W1486852018 @default.
- W4378745905 cites W1642699591 @default.
- W4378745905 cites W1733248925 @default.
- W4378745905 cites W1958041724 @default.
- W4378745905 cites W1974986677 @default.
- W4378745905 cites W1975412204 @default.
- W4378745905 cites W1985392528 @default.
- W4378745905 cites W1991033366 @default.
- W4378745905 cites W1998127479 @default.
- W4378745905 cites W2000618402 @default.
- W4378745905 cites W2011451766 @default.
- W4378745905 cites W2015647735 @default.
- W4378745905 cites W2020539709 @default.
- W4378745905 cites W2024626940 @default.
- W4378745905 cites W2039236689 @default.
- W4378745905 cites W2047326406 @default.
- W4378745905 cites W2053696585 @default.
- W4378745905 cites W2054914622 @default.
- W4378745905 cites W2059095731 @default.
- W4378745905 cites W2060277733 @default.
- W4378745905 cites W2061897041 @default.
- W4378745905 cites W2064836594 @default.
- W4378745905 cites W2078525842 @default.
- W4378745905 cites W2089442458 @default.
- W4378745905 cites W2103594871 @default.
- W4378745905 cites W2108395599 @default.
- W4378745905 cites W2123820663 @default.
- W4378745905 cites W2128378732 @default.
- W4378745905 cites W2147101007 @default.
- W4378745905 cites W2151542182 @default.
- W4378745905 cites W2152807601 @default.
- W4378745905 cites W2153564253 @default.
- W4378745905 cites W2160361560 @default.
- W4378745905 cites W2162222153 @default.
- W4378745905 cites W2194321275 @default.
- W4378745905 cites W2258796411 @default.
- W4378745905 cites W2271476098 @default.
- W4378745905 cites W2399075981 @default.
- W4378745905 cites W2527978657 @default.
- W4378745905 cites W2560647685 @default.
- W4378745905 cites W2619993245 @default.
- W4378745905 cites W2753961618 @default.
- W4378745905 cites W2783525259 @default.
- W4378745905 cites W2788388592 @default.
- W4378745905 cites W2890344110 @default.
- W4378745905 cites W2922319908 @default.
- W4378745905 cites W2947312223 @default.
- W4378745905 cites W2962971102 @default.
- W4378745905 cites W2963305465 @default.
- W4378745905 cites W2965658867 @default.
- W4378745905 cites W2982632705 @default.
- W4378745905 cites W2984844508 @default.
- W4378745905 cites W2985307628 @default.
- W4378745905 cites W3030364939 @default.
- W4378745905 cites W3036722487 @default.
- W4378745905 cites W3043133474 @default.
- W4378745905 cites W3045500847 @default.
- W4378745905 cites W3093947012 @default.
- W4378745905 cites W3100718033 @default.
- W4378745905 cites W3102311024 @default.
- W4378745905 cites W3105516366 @default.
- W4378745905 cites W3124478039 @default.
- W4378745905 cites W3139657805 @default.
- W4378745905 cites W3141223447 @default.
- W4378745905 cites W3149655929 @default.
- W4378745905 cites W3163842339 @default.
- W4378745905 cites W3199060265 @default.
- W4378745905 cites W3206497197 @default.
- W4378745905 cites W3211024470 @default.
- W4378745905 cites W3212486549 @default.
- W4378745905 cites W4200053066 @default.
- W4378745905 cites W4214639850 @default.
- W4378745905 cites W4239805381 @default.
- W4378745905 cites W4286894216 @default.
- W4378745905 cites W4288333794 @default.
- W4378745905 cites W2185212694 @default.
- W4378745905 doi "https://doi.org/10.3389/fnins.2023.1183321" @default.
- W4378745905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37250397" @default.
- W4378745905 hasPublicationYear "2023" @default.
- W4378745905 type Work @default.
- W4378745905 citedByCount "0" @default.
- W4378745905 crossrefType "journal-article" @default.
- W4378745905 hasAuthorship W4378745905A5074595426 @default.
- W4378745905 hasAuthorship W4378745905A5083720980 @default.
- W4378745905 hasBestOaLocation W43787459051 @default.
- W4378745905 hasConcept C108583219 @default.
- W4378745905 hasConcept C11731999 @default.
- W4378745905 hasConcept C119857082 @default.
- W4378745905 hasConcept C120822770 @default.
- W4378745905 hasConcept C15286952 @default.
- W4378745905 hasConcept C154945302 @default.
- W4378745905 hasConcept C15744967 @default.
- W4378745905 hasConcept C169760540 @default.