Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378746129> ?p ?o ?g. }
- W4378746129 endingPage "1045" @default.
- W4378746129 startingPage "1035" @default.
- W4378746129 abstract "The use of machine learning (ML) with metabolomics provides opportunities for the early diagnosis of disease. However, the accuracy of ML and extent of information obtained from metabolomics can be limited owing to challenges associated with interpreting disease prediction models and analyzing many chemical features with abundances that are correlated and “noisy”. Here, we report an interpretable neural network (NN) framework to accurately predict disease and identify significant biomarkers using whole metabolomics data sets without a priori feature selection. The performance of the NN approach for predicting Parkinson’s disease (PD) from blood plasma metabolomics data is significantly higher than other ML methods with a mean area under the curve of >0.995. PD-specific markers that predate clinical PD diagnosis and contribute significantly to early disease prediction were identified including an exogenous polyfluoroalkyl substance. It is anticipated that this accurate and interpretable NN-based approach can improve diagnostic performance for many diseases using metabolomics and other untargeted ‘omics methods." @default.
- W4378746129 created "2023-05-31" @default.
- W4378746129 creator A5003969045 @default.
- W4378746129 creator A5038794732 @default.
- W4378746129 creator A5045582222 @default.
- W4378746129 creator A5086221405 @default.
- W4378746129 date "2023-05-09" @default.
- W4378746129 modified "2023-10-16" @default.
- W4378746129 title "Interpretable Machine Learning on Metabolomics Data Reveals Biomarkers for Parkinson’s Disease" @default.
- W4378746129 cites W1977177161 @default.
- W4378746129 cites W1996863157 @default.
- W4378746129 cites W2006691834 @default.
- W4378746129 cites W2013816495 @default.
- W4378746129 cites W2027347547 @default.
- W4378746129 cites W2028277827 @default.
- W4378746129 cites W2031190866 @default.
- W4378746129 cites W2046189898 @default.
- W4378746129 cites W2048897966 @default.
- W4378746129 cites W2078285509 @default.
- W4378746129 cites W2092588275 @default.
- W4378746129 cites W2100463095 @default.
- W4378746129 cites W2105981176 @default.
- W4378746129 cites W2117800935 @default.
- W4378746129 cites W2122533122 @default.
- W4378746129 cites W2131600766 @default.
- W4378746129 cites W2132066552 @default.
- W4378746129 cites W2149732522 @default.
- W4378746129 cites W2154631167 @default.
- W4378746129 cites W2156411508 @default.
- W4378746129 cites W2157043395 @default.
- W4378746129 cites W2159704023 @default.
- W4378746129 cites W2281923782 @default.
- W4378746129 cites W2735215200 @default.
- W4378746129 cites W2793307782 @default.
- W4378746129 cites W2833848838 @default.
- W4378746129 cites W2885919156 @default.
- W4378746129 cites W2901548714 @default.
- W4378746129 cites W2912538914 @default.
- W4378746129 cites W2921763762 @default.
- W4378746129 cites W2945976633 @default.
- W4378746129 cites W2967011693 @default.
- W4378746129 cites W2999309192 @default.
- W4378746129 cites W3006012411 @default.
- W4378746129 cites W3034396232 @default.
- W4378746129 cites W3035228976 @default.
- W4378746129 cites W3045365324 @default.
- W4378746129 cites W3081368700 @default.
- W4378746129 cites W3125488374 @default.
- W4378746129 cites W3133997489 @default.
- W4378746129 cites W3135161880 @default.
- W4378746129 cites W3157419554 @default.
- W4378746129 cites W3195879556 @default.
- W4378746129 cites W3198919395 @default.
- W4378746129 cites W3201349709 @default.
- W4378746129 cites W4210327336 @default.
- W4378746129 cites W4211044101 @default.
- W4378746129 cites W4223459421 @default.
- W4378746129 cites W4226150259 @default.
- W4378746129 cites W4283156058 @default.
- W4378746129 doi "https://doi.org/10.1021/acscentsci.2c01468" @default.
- W4378746129 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37252351" @default.
- W4378746129 hasPublicationYear "2023" @default.
- W4378746129 type Work @default.
- W4378746129 citedByCount "1" @default.
- W4378746129 countsByYear W43787461292023 @default.
- W4378746129 crossrefType "journal-article" @default.
- W4378746129 hasAuthorship W4378746129A5003969045 @default.
- W4378746129 hasAuthorship W4378746129A5038794732 @default.
- W4378746129 hasAuthorship W4378746129A5045582222 @default.
- W4378746129 hasAuthorship W4378746129A5086221405 @default.
- W4378746129 hasBestOaLocation W43787461291 @default.
- W4378746129 hasConcept C119857082 @default.
- W4378746129 hasConcept C124101348 @default.
- W4378746129 hasConcept C138885662 @default.
- W4378746129 hasConcept C142724271 @default.
- W4378746129 hasConcept C148483581 @default.
- W4378746129 hasConcept C154945302 @default.
- W4378746129 hasConcept C157585117 @default.
- W4378746129 hasConcept C21565614 @default.
- W4378746129 hasConcept C2776401178 @default.
- W4378746129 hasConcept C2779134260 @default.
- W4378746129 hasConcept C2779734285 @default.
- W4378746129 hasConcept C41008148 @default.
- W4378746129 hasConcept C41895202 @default.
- W4378746129 hasConcept C50644808 @default.
- W4378746129 hasConcept C60644358 @default.
- W4378746129 hasConcept C71924100 @default.
- W4378746129 hasConcept C86803240 @default.
- W4378746129 hasConceptScore W4378746129C119857082 @default.
- W4378746129 hasConceptScore W4378746129C124101348 @default.
- W4378746129 hasConceptScore W4378746129C138885662 @default.
- W4378746129 hasConceptScore W4378746129C142724271 @default.
- W4378746129 hasConceptScore W4378746129C148483581 @default.
- W4378746129 hasConceptScore W4378746129C154945302 @default.
- W4378746129 hasConceptScore W4378746129C157585117 @default.
- W4378746129 hasConceptScore W4378746129C21565614 @default.
- W4378746129 hasConceptScore W4378746129C2776401178 @default.
- W4378746129 hasConceptScore W4378746129C2779134260 @default.