Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378783002> ?p ?o ?g. }
- W4378783002 abstract "Molecular radiation biomarkers are an emerging tool in radiation research with applications for cancer radiotherapy, radiation risk assessment, and even human space travel. However, biomarker screening in genome-wide expression datasets using conventional tools is time-consuming and underlies analyst (human) bias. Machine Learning (ML) methods can improve the sensitivity and specificity of biomarker identification, increase analytical speed, and avoid multicollinearity and human bias.To develop a resource-efficient ML framework for radiation biomarker discovery using gene expression data from irradiated normal tissues. Further, to identify biomarker panels predicting radiation dose with tissue specificity.A strategic search in the Gene Expression Omnibus database identified a transcriptomic dataset (GSE44762) for normal tissues radiation responses (murine kidney cortex and medulla) suited for biomarker discovery using an ML approach. The dataset was pre-processed in R and separated into train and test data subsets. High computational cost of Genetic Algorithm/k-Nearest Neighbor (GA/KNN) mandated optimization and 13 ML models were tested using the caret package in R. Biomarker performance was evaluated and visualized via Principal Component Analysis (PCA) and dose regression. The novelty of ML-identified biomarker panels was evaluated by literature search.Caret-based feature selection and ML methods vastly improved processing time over the GA approach. The KNN method yielded overall best performance values on train and test data and was implemented into the framework. The top-ranking genes were Cdkn1a, Gria3, Mdm2 and Plk2 in cortex, and Brf2, Ccng1, Cdkn1a, Ddit4l, and Gria3 in medulla. These candidates successfully categorized dose groups and tissues in PCA. Regression analysis showed that correlation between predicted and true dose was high with R2 of 0.97 and 0.99 for cortex and medulla, respectively.The caret framework is a powerful tool for radiation biomarker discovery optimizing performance with resource-efficiency for broad implementation in the field. The KNN-based approach identified Brf2, Ddit4l, and Gria3 mRNA as novel candidates that have been uncharacterized as radiation biomarkers to date. The biomarker panel showed good performance in dose and tissue separation and dose regression. Further training with larger cohorts is warranted to improve accuracy, especially for lower doses." @default.
- W4378783002 created "2023-06-01" @default.
- W4378783002 creator A5007958974 @default.
- W4378783002 creator A5039563353 @default.
- W4378783002 creator A5076198211 @default.
- W4378783002 creator A5082149993 @default.
- W4378783002 date "2023-05-15" @default.
- W4378783002 modified "2023-09-23" @default.
- W4378783002 title "Development of a machine learning framework for radiation biomarker discovery and absorbed dose prediction" @default.
- W4378783002 cites W1434302077 @default.
- W4378783002 cites W1965478165 @default.
- W4378783002 cites W1974343556 @default.
- W4378783002 cites W1980154050 @default.
- W4378783002 cites W2000749364 @default.
- W4378783002 cites W2005091301 @default.
- W4378783002 cites W2014137103 @default.
- W4378783002 cites W2018064965 @default.
- W4378783002 cites W2022117623 @default.
- W4378783002 cites W2035341583 @default.
- W4378783002 cites W2040280943 @default.
- W4378783002 cites W2055840702 @default.
- W4378783002 cites W2065181879 @default.
- W4378783002 cites W2071355913 @default.
- W4378783002 cites W2103838773 @default.
- W4378783002 cites W2115441850 @default.
- W4378783002 cites W2115455109 @default.
- W4378783002 cites W2127544153 @default.
- W4378783002 cites W2156258947 @default.
- W4378783002 cites W2156561142 @default.
- W4378783002 cites W2168301062 @default.
- W4378783002 cites W2171773667 @default.
- W4378783002 cites W2283085523 @default.
- W4378783002 cites W2345798490 @default.
- W4378783002 cites W2366841009 @default.
- W4378783002 cites W2537065179 @default.
- W4378783002 cites W2558992299 @default.
- W4378783002 cites W2576820937 @default.
- W4378783002 cites W2590246710 @default.
- W4378783002 cites W2806560179 @default.
- W4378783002 cites W2845203741 @default.
- W4378783002 cites W2885326465 @default.
- W4378783002 cites W2946185430 @default.
- W4378783002 cites W2996313857 @default.
- W4378783002 cites W3025872843 @default.
- W4378783002 cites W3039964646 @default.
- W4378783002 cites W3117208077 @default.
- W4378783002 cites W3162144386 @default.
- W4378783002 cites W3202862859 @default.
- W4378783002 cites W2536147259 @default.
- W4378783002 doi "https://doi.org/10.3389/fonc.2023.1156009" @default.
- W4378783002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37256187" @default.
- W4378783002 hasPublicationYear "2023" @default.
- W4378783002 type Work @default.
- W4378783002 citedByCount "0" @default.
- W4378783002 crossrefType "journal-article" @default.
- W4378783002 hasAuthorship W4378783002A5007958974 @default.
- W4378783002 hasAuthorship W4378783002A5039563353 @default.
- W4378783002 hasAuthorship W4378783002A5076198211 @default.
- W4378783002 hasAuthorship W4378783002A5082149993 @default.
- W4378783002 hasBestOaLocation W43787830021 @default.
- W4378783002 hasConcept C104317684 @default.
- W4378783002 hasConcept C119857082 @default.
- W4378783002 hasConcept C124535831 @default.
- W4378783002 hasConcept C148483581 @default.
- W4378783002 hasConcept C153180895 @default.
- W4378783002 hasConcept C154945302 @default.
- W4378783002 hasConcept C27438332 @default.
- W4378783002 hasConcept C2781197716 @default.
- W4378783002 hasConcept C41008148 @default.
- W4378783002 hasConcept C46111723 @default.
- W4378783002 hasConcept C54355233 @default.
- W4378783002 hasConcept C60644358 @default.
- W4378783002 hasConcept C70721500 @default.
- W4378783002 hasConcept C86803240 @default.
- W4378783002 hasConceptScore W4378783002C104317684 @default.
- W4378783002 hasConceptScore W4378783002C119857082 @default.
- W4378783002 hasConceptScore W4378783002C124535831 @default.
- W4378783002 hasConceptScore W4378783002C148483581 @default.
- W4378783002 hasConceptScore W4378783002C153180895 @default.
- W4378783002 hasConceptScore W4378783002C154945302 @default.
- W4378783002 hasConceptScore W4378783002C27438332 @default.
- W4378783002 hasConceptScore W4378783002C2781197716 @default.
- W4378783002 hasConceptScore W4378783002C41008148 @default.
- W4378783002 hasConceptScore W4378783002C46111723 @default.
- W4378783002 hasConceptScore W4378783002C54355233 @default.
- W4378783002 hasConceptScore W4378783002C60644358 @default.
- W4378783002 hasConceptScore W4378783002C70721500 @default.
- W4378783002 hasConceptScore W4378783002C86803240 @default.
- W4378783002 hasFunder F4320327257 @default.
- W4378783002 hasLocation W43787830021 @default.
- W4378783002 hasLocation W43787830022 @default.
- W4378783002 hasOpenAccess W4378783002 @default.
- W4378783002 hasPrimaryLocation W43787830021 @default.
- W4378783002 hasRelatedWork W2010715465 @default.
- W4378783002 hasRelatedWork W2085553065 @default.
- W4378783002 hasRelatedWork W2108104958 @default.
- W4378783002 hasRelatedWork W2144653557 @default.
- W4378783002 hasRelatedWork W2328896011 @default.
- W4378783002 hasRelatedWork W2380927352 @default.
- W4378783002 hasRelatedWork W3048981730 @default.