Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378804674> ?p ?o ?g. }
- W4378804674 endingPage "17" @default.
- W4378804674 startingPage "1" @default.
- W4378804674 abstract "Recently, pan-sharpening methods based on deep learning (DL) have achieved state-of-the-art results. However, current existing DL-based pan-sharpening methods need to be trained repetitively for different satellite sensors to obtain satisfactory fusion performance and therefore require a large number of training images for each satellite. To deal with these issues, in this paper we propose a unified two-stage spatial and spectral network (UTSN) for pan-sharpening. A branch of networks is constructed for each different satellite, in which the spatial enhancement network (SEN) is shared to improve the spatial details in the fused images from different satellites. A spectral adjustment network (SAN) is employed to capture the spectral characteristics of the specific satellite. Through SAN, the spectral information in the intermediate image from SEN is refined to produce the final fusion results. Such a framework can integrate the datasets from different satellites together for sufficient training of SEN. The proposed method is able to achieve promising pan-sharpening results also for a new satellite with limited training images by only learning a new SAN on the few-shot datasets due to the simple but efficient structure of SAN. The experimental results show that the proposed method can produce state-of-the-art fusion results in both the standard and few-shot cases. The source code is publicly available at https://github.com/RSMagneto/UTSN." @default.
- W4378804674 created "2023-06-01" @default.
- W4378804674 creator A5006095323 @default.
- W4378804674 creator A5007544409 @default.
- W4378804674 creator A5040428803 @default.
- W4378804674 creator A5046523518 @default.
- W4378804674 creator A5052274720 @default.
- W4378804674 creator A5080244427 @default.
- W4378804674 date "2023-01-01" @default.
- W4378804674 modified "2023-10-01" @default.
- W4378804674 title "A Unified Two-Stage Spatial and Spectral Network With Few-Shot Learning for Pan-Sharpening" @default.
- W4378804674 cites W2100329651 @default.
- W4378804674 cites W2106891293 @default.
- W4378804674 cites W2129953395 @default.
- W4378804674 cites W2137893158 @default.
- W4378804674 cites W2139529730 @default.
- W4378804674 cites W2144436897 @default.
- W4378804674 cites W2149720806 @default.
- W4378804674 cites W2159269332 @default.
- W4378804674 cites W2163334907 @default.
- W4378804674 cites W2194775991 @default.
- W4378804674 cites W2462592242 @default.
- W4378804674 cites W2511036283 @default.
- W4378804674 cites W2519236071 @default.
- W4378804674 cites W2619662254 @default.
- W4378804674 cites W2748857496 @default.
- W4378804674 cites W2777033955 @default.
- W4378804674 cites W2790597059 @default.
- W4378804674 cites W2795417538 @default.
- W4378804674 cites W2945218802 @default.
- W4378804674 cites W2964275574 @default.
- W4378804674 cites W2986860520 @default.
- W4378804674 cites W2990365600 @default.
- W4378804674 cites W3009431086 @default.
- W4378804674 cites W3029812440 @default.
- W4378804674 cites W3081397212 @default.
- W4378804674 cites W3096904276 @default.
- W4378804674 cites W3098542449 @default.
- W4378804674 cites W3099258777 @default.
- W4378804674 cites W3115223653 @default.
- W4378804674 cites W3127438141 @default.
- W4378804674 cites W3128546730 @default.
- W4378804674 cites W3135444107 @default.
- W4378804674 cites W3165848914 @default.
- W4378804674 cites W3172472472 @default.
- W4378804674 cites W3194285415 @default.
- W4378804674 cites W3204839818 @default.
- W4378804674 cites W4225982893 @default.
- W4378804674 cites W4226120860 @default.
- W4378804674 cites W4226198972 @default.
- W4378804674 cites W4226512326 @default.
- W4378804674 cites W4285253304 @default.
- W4378804674 cites W4285505614 @default.
- W4378804674 cites W4288391574 @default.
- W4378804674 cites W4289950756 @default.
- W4378804674 cites W4290043190 @default.
- W4378804674 cites W4292794036 @default.
- W4378804674 cites W4294310912 @default.
- W4378804674 cites W4295308438 @default.
- W4378804674 cites W4312462231 @default.
- W4378804674 cites W4313476641 @default.
- W4378804674 cites W4313479634 @default.
- W4378804674 cites W4319663632 @default.
- W4378804674 cites W811864384 @default.
- W4378804674 doi "https://doi.org/10.1109/tgrs.2023.3281602" @default.
- W4378804674 hasPublicationYear "2023" @default.
- W4378804674 type Work @default.
- W4378804674 citedByCount "0" @default.
- W4378804674 crossrefType "journal-article" @default.
- W4378804674 hasAuthorship W4378804674A5006095323 @default.
- W4378804674 hasAuthorship W4378804674A5007544409 @default.
- W4378804674 hasAuthorship W4378804674A5040428803 @default.
- W4378804674 hasAuthorship W4378804674A5046523518 @default.
- W4378804674 hasAuthorship W4378804674A5052274720 @default.
- W4378804674 hasAuthorship W4378804674A5080244427 @default.
- W4378804674 hasConcept C108583219 @default.
- W4378804674 hasConcept C115961682 @default.
- W4378804674 hasConcept C127413603 @default.
- W4378804674 hasConcept C138885662 @default.
- W4378804674 hasConcept C146978453 @default.
- W4378804674 hasConcept C153180895 @default.
- W4378804674 hasConcept C154945302 @default.
- W4378804674 hasConcept C158525013 @default.
- W4378804674 hasConcept C177264268 @default.
- W4378804674 hasConcept C178790620 @default.
- W4378804674 hasConcept C185592680 @default.
- W4378804674 hasConcept C19269812 @default.
- W4378804674 hasConcept C199360897 @default.
- W4378804674 hasConcept C205649164 @default.
- W4378804674 hasConcept C2776760102 @default.
- W4378804674 hasConcept C2778344882 @default.
- W4378804674 hasConcept C2781137444 @default.
- W4378804674 hasConcept C41008148 @default.
- W4378804674 hasConcept C41895202 @default.
- W4378804674 hasConcept C50644808 @default.
- W4378804674 hasConcept C62649853 @default.
- W4378804674 hasConcept C69744172 @default.
- W4378804674 hasConceptScore W4378804674C108583219 @default.