Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378804816> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4378804816 endingPage "5" @default.
- W4378804816 startingPage "1" @default.
- W4378804816 abstract "Reservoir lithology identification is critical to reservoir characterization, reserves calculation, and geological modeling. The deep learning lithology identification method is a data-driven algorithm for establishing the relationship between lithology-sensitive properties and litho-types from a large amount of observed data. The lithology label is inadequate for high drilling and core recovery costs. Consequently, we propose a reservoir lithology identification method based on improved adversarial learning to relieve the overfitting problem and the multi-solution problem caused by inadequate labeled data and massive learnable parameters in training. Firstly, a probabilistic lithology classification neural network (PLCNN) is constructed to predict lithology from density, P-velocity, and S-velocity. In addition, we design an improved adversarial learning (IAL) lithology identification workflow to train the PLCNN with limited labeled data and large-scale unlabeled data. In the workflow, a lightweight discrimination network is established to ensure that the prediction result of the PLCNN is consistent with the data distribution characteristics of real underground lithology. Finally, the proposed method is successfully applied to the Book cliffs model. Compared with the conventional supervised learning workflow, the misclassification of sand and sandy shale can be relieved efficiently with the IAL workflow, and the classification accuracy can be improved to 92.71%." @default.
- W4378804816 created "2023-06-01" @default.
- W4378804816 creator A5014692565 @default.
- W4378804816 creator A5038272110 @default.
- W4378804816 creator A5067864167 @default.
- W4378804816 date "2023-01-01" @default.
- W4378804816 modified "2023-10-14" @default.
- W4378804816 title "Reservoir Lithology Identification Based on Improved Adversarial Learning" @default.
- W4378804816 cites W1498436455 @default.
- W4378804816 cites W2588463878 @default.
- W4378804816 cites W2766259095 @default.
- W4378804816 cites W2789508474 @default.
- W4378804816 cites W2808760859 @default.
- W4378804816 cites W2886098498 @default.
- W4378804816 cites W2945931612 @default.
- W4378804816 cites W2997722839 @default.
- W4378804816 cites W3000927853 @default.
- W4378804816 cites W3011644199 @default.
- W4378804816 cites W3012833929 @default.
- W4378804816 cites W3085848884 @default.
- W4378804816 cites W3127512768 @default.
- W4378804816 cites W3128002121 @default.
- W4378804816 cites W3212771327 @default.
- W4378804816 cites W4200107397 @default.
- W4378804816 cites W4221057764 @default.
- W4378804816 cites W4225713237 @default.
- W4378804816 cites W4283069831 @default.
- W4378804816 doi "https://doi.org/10.1109/lgrs.2023.3281545" @default.
- W4378804816 hasPublicationYear "2023" @default.
- W4378804816 type Work @default.
- W4378804816 citedByCount "0" @default.
- W4378804816 crossrefType "journal-article" @default.
- W4378804816 hasAuthorship W4378804816A5014692565 @default.
- W4378804816 hasAuthorship W4378804816A5038272110 @default.
- W4378804816 hasAuthorship W4378804816A5067864167 @default.
- W4378804816 hasConcept C116834253 @default.
- W4378804816 hasConcept C119857082 @default.
- W4378804816 hasConcept C122792734 @default.
- W4378804816 hasConcept C124101348 @default.
- W4378804816 hasConcept C127313418 @default.
- W4378804816 hasConcept C14641988 @default.
- W4378804816 hasConcept C154945302 @default.
- W4378804816 hasConcept C177212765 @default.
- W4378804816 hasConcept C41008148 @default.
- W4378804816 hasConcept C50644808 @default.
- W4378804816 hasConcept C5900021 @default.
- W4378804816 hasConcept C59822182 @default.
- W4378804816 hasConcept C77088390 @default.
- W4378804816 hasConcept C78762247 @default.
- W4378804816 hasConcept C86803240 @default.
- W4378804816 hasConceptScore W4378804816C116834253 @default.
- W4378804816 hasConceptScore W4378804816C119857082 @default.
- W4378804816 hasConceptScore W4378804816C122792734 @default.
- W4378804816 hasConceptScore W4378804816C124101348 @default.
- W4378804816 hasConceptScore W4378804816C127313418 @default.
- W4378804816 hasConceptScore W4378804816C14641988 @default.
- W4378804816 hasConceptScore W4378804816C154945302 @default.
- W4378804816 hasConceptScore W4378804816C177212765 @default.
- W4378804816 hasConceptScore W4378804816C41008148 @default.
- W4378804816 hasConceptScore W4378804816C50644808 @default.
- W4378804816 hasConceptScore W4378804816C5900021 @default.
- W4378804816 hasConceptScore W4378804816C59822182 @default.
- W4378804816 hasConceptScore W4378804816C77088390 @default.
- W4378804816 hasConceptScore W4378804816C78762247 @default.
- W4378804816 hasConceptScore W4378804816C86803240 @default.
- W4378804816 hasFunder F4320321001 @default.
- W4378804816 hasFunder F4320328788 @default.
- W4378804816 hasFunder F4320335787 @default.
- W4378804816 hasLocation W43788048161 @default.
- W4378804816 hasOpenAccess W4378804816 @default.
- W4378804816 hasPrimaryLocation W43788048161 @default.
- W4378804816 hasRelatedWork W145656223 @default.
- W4378804816 hasRelatedWork W2032020987 @default.
- W4378804816 hasRelatedWork W2037001003 @default.
- W4378804816 hasRelatedWork W230885945 @default.
- W4378804816 hasRelatedWork W2313888560 @default.
- W4378804816 hasRelatedWork W2363304779 @default.
- W4378804816 hasRelatedWork W2617903670 @default.
- W4378804816 hasRelatedWork W3120328285 @default.
- W4378804816 hasRelatedWork W4312862978 @default.
- W4378804816 hasRelatedWork W1629725936 @default.
- W4378804816 hasVolume "20" @default.
- W4378804816 isParatext "false" @default.
- W4378804816 isRetracted "false" @default.
- W4378804816 workType "article" @default.