Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378808045> ?p ?o ?g. }
- W4378808045 abstract "ABSTRACT Across the tree of life, clonal populations—from cancer to chronic bacterial infections — frequently give rise to subpopulations with different metabolic phenotypes. Metabolic exchange or cross-feeding between subpopulations can have profound effects on both cell phenotypes and population-level behavior. In Pseudomonas aeruginosa , subpopulations with loss-of-function mutations in the lasR gene are common. Though LasR is often described for its role in density-dependent virulence factor expression, interactions between genotypes suggest potential metabolic differences. The specific metabolic pathways and regulatory genetics enabling such interactions were previously undescribed. Here, we performed an unbiased metabolomics analysis that revealed broad differences in intracellular metabolomes, including higher levels of intracellular citrate in LasR- strains. We found that while both strains secreted citrate, only LasR- strains, consumed citrate in rich media. Elevated activity of the CbrAB two component system which relieves carbon catabolite repression enabled citrate uptake. Within mixed genotype communities, we found that the citrate responsive two component system TctED and its gene targets OpdH (porin) and TctABC (transporter) required for citrate uptake were induced and required for enhanced RhlR signalling and virulence factor expression in LasR- strains. Enhanced citrate uptake by LasR- strains eliminates differences in RhlR activity between LasR+ and LasR- strains thereby circumventing the sensitivity of LasR- strains to quorum sensing controlled exoproducts. Citrate cross feeding also induces pyocyanin production in LasR- strains co-cultured with Staphylococcus aureus , another species known to secrete biologically-active concentrations of citrate. Metabolite cross feeding may play unrecognized roles in competitive fitness and virulence outcomes when different cell types are together. IMPORTANCE Cross-feeding can change community composition, structure and function. Though cross-feeding has predominantly focused on interactions between species, here we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes of Pseudomonas aeruginosa . Here we illustrate an example of how such clonally-derived metabolic diversity enables intraspecies cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa , was differentially consumed between genotypes, and this cross-feeding induced virulence factor expression and fitness in genotypes associated with worse disease." @default.
- W4378808045 created "2023-06-01" @default.
- W4378808045 creator A5013463468 @default.
- W4378808045 creator A5053696880 @default.
- W4378808045 creator A5072283075 @default.
- W4378808045 creator A5078231749 @default.
- W4378808045 creator A5092053780 @default.
- W4378808045 date "2023-05-31" @default.
- W4378808045 modified "2023-09-30" @default.
- W4378808045 title "Citrate cross-feeding between<i>Pseudomonas aerguinosa</i>genotypes supports<i>lasR</i>mutant fitness" @default.
- W4378808045 cites W1565711171 @default.
- W4378808045 cites W1589482397 @default.
- W4378808045 cites W1617032692 @default.
- W4378808045 cites W1977809773 @default.
- W4378808045 cites W1979888857 @default.
- W4378808045 cites W1986341083 @default.
- W4378808045 cites W1987815733 @default.
- W4378808045 cites W1998409894 @default.
- W4378808045 cites W1999046178 @default.
- W4378808045 cites W2002543601 @default.
- W4378808045 cites W2041294808 @default.
- W4378808045 cites W2041585304 @default.
- W4378808045 cites W2045237411 @default.
- W4378808045 cites W2058281232 @default.
- W4378808045 cites W2067444373 @default.
- W4378808045 cites W2076760451 @default.
- W4378808045 cites W2082753669 @default.
- W4378808045 cites W2097314730 @default.
- W4378808045 cites W2103238085 @default.
- W4378808045 cites W2108862719 @default.
- W4378808045 cites W2117268680 @default.
- W4378808045 cites W2117532917 @default.
- W4378808045 cites W2119871660 @default.
- W4378808045 cites W2122616212 @default.
- W4378808045 cites W2122923061 @default.
- W4378808045 cites W2123303153 @default.
- W4378808045 cites W2125227950 @default.
- W4378808045 cites W2130003824 @default.
- W4378808045 cites W2137215017 @default.
- W4378808045 cites W2138350975 @default.
- W4378808045 cites W2150741646 @default.
- W4378808045 cites W2154492506 @default.
- W4378808045 cites W2159468050 @default.
- W4378808045 cites W2162803832 @default.
- W4378808045 cites W2192402885 @default.
- W4378808045 cites W2290216457 @default.
- W4378808045 cites W2728480371 @default.
- W4378808045 cites W2741458976 @default.
- W4378808045 cites W2741959237 @default.
- W4378808045 cites W2765760707 @default.
- W4378808045 cites W2793657534 @default.
- W4378808045 cites W2899359448 @default.
- W4378808045 cites W2900182903 @default.
- W4378808045 cites W2919872889 @default.
- W4378808045 cites W2922082542 @default.
- W4378808045 cites W2931314706 @default.
- W4378808045 cites W3001725947 @default.
- W4378808045 cites W3014777536 @default.
- W4378808045 cites W3015646919 @default.
- W4378808045 cites W3018324814 @default.
- W4378808045 cites W3024121946 @default.
- W4378808045 cites W3080437014 @default.
- W4378808045 cites W3134376049 @default.
- W4378808045 cites W3166004998 @default.
- W4378808045 cites W3175122704 @default.
- W4378808045 cites W3185224352 @default.
- W4378808045 cites W4205718327 @default.
- W4378808045 cites W4220946239 @default.
- W4378808045 cites W4220946801 @default.
- W4378808045 cites W4225292302 @default.
- W4378808045 cites W4226052602 @default.
- W4378808045 cites W4253873693 @default.
- W4378808045 cites W4280499164 @default.
- W4378808045 cites W4280566988 @default.
- W4378808045 cites W4283259045 @default.
- W4378808045 cites W4298032220 @default.
- W4378808045 cites W4307923246 @default.
- W4378808045 cites W4311651502 @default.
- W4378808045 doi "https://doi.org/10.1101/2023.05.30.542973" @default.
- W4378808045 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37398089" @default.
- W4378808045 hasPublicationYear "2023" @default.
- W4378808045 type Work @default.
- W4378808045 citedByCount "0" @default.
- W4378808045 crossrefType "posted-content" @default.
- W4378808045 hasAuthorship W4378808045A5013463468 @default.
- W4378808045 hasAuthorship W4378808045A5053696880 @default.
- W4378808045 hasAuthorship W4378808045A5072283075 @default.
- W4378808045 hasAuthorship W4378808045A5078231749 @default.
- W4378808045 hasAuthorship W4378808045A5092053780 @default.
- W4378808045 hasBestOaLocation W43788080451 @default.
- W4378808045 hasConcept C101762097 @default.
- W4378808045 hasConcept C104317684 @default.
- W4378808045 hasConcept C118687296 @default.
- W4378808045 hasConcept C127716648 @default.
- W4378808045 hasConcept C143065580 @default.
- W4378808045 hasConcept C144024400 @default.
- W4378808045 hasConcept C149923435 @default.
- W4378808045 hasConcept C150194340 @default.
- W4378808045 hasConcept C2777637488 @default.
- W4378808045 hasConcept C28406088 @default.