Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378839042> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4378839042 abstract "The change in forest cover plays a vital role in ecosystem services, atmospheric carbon balance, and, thus, climate change. In this study, land use maps for the periods 1984 and 2012, derived from Landsat TM satellite imagery, were used. The goal of this study is comparison of three procedures of artificial neural network, logistic regression, and similarity weighted instance-based learning (SIM Weight) to predict spatial trend of forest cover change. The SimWeight considers the nearest instances in the variable space, which are computed based on past changes and the relative importance of the driving variables. The LogReg approach, on the other hand, is a type of generalized linear model that assumes that the current land use pattern reflects the processes of land use in the past. Artificial Neural Network is a nonparametric algorithm that is capable of fitting complex nonlinear functions to find the relations between past changes and their driving variables. Such approaches are expected to produce better fitting between the change potential and their complex relationships with their driving variables. Artificial neural networks in comparison with logistic regression and SimWeight have higher accuracy and less error in modeling and predicting of forest changes." @default.
- W4378839042 created "2023-06-01" @default.
- W4378839042 creator A5028248909 @default.
- W4378839042 creator A5052668948 @default.
- W4378839042 date "2023-05-19" @default.
- W4378839042 modified "2023-10-01" @default.
- W4378839042 title "A Study of the Comparison between Artificial Neural Networks, Logistic Regression and Similarity Weighted Instance-based Learning in Modeling and Predicting Trends in Deforestation" @default.
- W4378839042 cites W102544123 @default.
- W4378839042 cites W1597814351 @default.
- W4378839042 cites W1905063915 @default.
- W4378839042 cites W1989800878 @default.
- W4378839042 cites W2008633810 @default.
- W4378839042 cites W2009163215 @default.
- W4378839042 cites W2013168176 @default.
- W4378839042 cites W2014430705 @default.
- W4378839042 cites W2039668946 @default.
- W4378839042 cites W2052250761 @default.
- W4378839042 cites W2063144659 @default.
- W4378839042 cites W2073783727 @default.
- W4378839042 cites W2091720785 @default.
- W4378839042 cites W2095498622 @default.
- W4378839042 cites W2097653553 @default.
- W4378839042 cites W2106530591 @default.
- W4378839042 cites W2107939074 @default.
- W4378839042 cites W2120000166 @default.
- W4378839042 cites W2346518465 @default.
- W4378839042 doi "https://doi.org/10.5772/intechopen.111615" @default.
- W4378839042 hasPublicationYear "2023" @default.
- W4378839042 type Work @default.
- W4378839042 citedByCount "0" @default.
- W4378839042 crossrefType "book-chapter" @default.
- W4378839042 hasAuthorship W4378839042A5028248909 @default.
- W4378839042 hasAuthorship W4378839042A5052668948 @default.
- W4378839042 hasBestOaLocation W43788390421 @default.
- W4378839042 hasConcept C103278499 @default.
- W4378839042 hasConcept C115961682 @default.
- W4378839042 hasConcept C119857082 @default.
- W4378839042 hasConcept C134306372 @default.
- W4378839042 hasConcept C151956035 @default.
- W4378839042 hasConcept C154945302 @default.
- W4378839042 hasConcept C182365436 @default.
- W4378839042 hasConcept C18903297 @default.
- W4378839042 hasConcept C2780648208 @default.
- W4378839042 hasConcept C33923547 @default.
- W4378839042 hasConcept C41008148 @default.
- W4378839042 hasConcept C4792198 @default.
- W4378839042 hasConcept C50644808 @default.
- W4378839042 hasConcept C86803240 @default.
- W4378839042 hasConceptScore W4378839042C103278499 @default.
- W4378839042 hasConceptScore W4378839042C115961682 @default.
- W4378839042 hasConceptScore W4378839042C119857082 @default.
- W4378839042 hasConceptScore W4378839042C134306372 @default.
- W4378839042 hasConceptScore W4378839042C151956035 @default.
- W4378839042 hasConceptScore W4378839042C154945302 @default.
- W4378839042 hasConceptScore W4378839042C182365436 @default.
- W4378839042 hasConceptScore W4378839042C18903297 @default.
- W4378839042 hasConceptScore W4378839042C2780648208 @default.
- W4378839042 hasConceptScore W4378839042C33923547 @default.
- W4378839042 hasConceptScore W4378839042C41008148 @default.
- W4378839042 hasConceptScore W4378839042C4792198 @default.
- W4378839042 hasConceptScore W4378839042C50644808 @default.
- W4378839042 hasConceptScore W4378839042C86803240 @default.
- W4378839042 hasLocation W43788390421 @default.
- W4378839042 hasOpenAccess W4378839042 @default.
- W4378839042 hasPrimaryLocation W43788390421 @default.
- W4378839042 hasRelatedWork W2961085424 @default.
- W4378839042 hasRelatedWork W3046775127 @default.
- W4378839042 hasRelatedWork W3170094116 @default.
- W4378839042 hasRelatedWork W4211071659 @default.
- W4378839042 hasRelatedWork W4285260836 @default.
- W4378839042 hasRelatedWork W4286629047 @default.
- W4378839042 hasRelatedWork W4306321456 @default.
- W4378839042 hasRelatedWork W4306674287 @default.
- W4378839042 hasRelatedWork W1629725936 @default.
- W4378839042 hasRelatedWork W4224009465 @default.
- W4378839042 isParatext "false" @default.
- W4378839042 isRetracted "false" @default.
- W4378839042 workType "book-chapter" @default.