Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378839441> ?p ?o ?g. }
- W4378839441 endingPage "113018" @default.
- W4378839441 startingPage "113018" @default.
- W4378839441 abstract "Modern industrial products are developing in intelligence, information, and integration. Hence higher quality requirements are put forward for the reliability of its parts. Computer vision-based automatic defect detection method shows a promising application prospect due to its advantages such as contactless and fastness. However, it is challenging to detect surface defects since the shape and location of the defects vary randomly. Moreover, this task becomes more difficult due to the defects' rarity, limiting the dataset's size and rendering it imbalanced. This study proposed a novel defect detection algorithm based on a metaheuristic self-organizing neural network (MSOM) to deal with the imbalanced dataset. The Maximum mean discrepancy was introduced to build the fitness function and the optimal structure of MSOM was determined by solving the fitness function iteratively. Experimental results showed that our method outperformed seven state-of-the-art algorithms on the imbalanced dataset of aluminum tube defects." @default.
- W4378839441 created "2023-06-01" @default.
- W4378839441 creator A5000912392 @default.
- W4378839441 creator A5069879150 @default.
- W4378839441 creator A5086917524 @default.
- W4378839441 date "2023-08-01" @default.
- W4378839441 modified "2023-09-27" @default.
- W4378839441 title "A learning-based approach for aluminum tube defect detection using imbalanced dataset" @default.
- W4378839441 cites W1959220275 @default.
- W4378839441 cites W1988790447 @default.
- W4378839441 cites W1999601189 @default.
- W4378839441 cites W2031614119 @default.
- W4378839441 cites W2046079134 @default.
- W4378839441 cites W2087240369 @default.
- W4378839441 cites W2087996714 @default.
- W4378839441 cites W2102397036 @default.
- W4378839441 cites W2164943005 @default.
- W4378839441 cites W2165835468 @default.
- W4378839441 cites W2624913439 @default.
- W4378839441 cites W2891391275 @default.
- W4378839441 cites W2925274914 @default.
- W4378839441 cites W2963891399 @default.
- W4378839441 cites W2971749073 @default.
- W4378839441 cites W2995683920 @default.
- W4378839441 cites W2995758361 @default.
- W4378839441 cites W3014524176 @default.
- W4378839441 cites W3015967287 @default.
- W4378839441 cites W3022206528 @default.
- W4378839441 cites W3025289572 @default.
- W4378839441 cites W3042297952 @default.
- W4378839441 cites W3109072952 @default.
- W4378839441 cites W3118096520 @default.
- W4378839441 cites W3138025798 @default.
- W4378839441 cites W3138516171 @default.
- W4378839441 cites W3146188393 @default.
- W4378839441 cites W3154594794 @default.
- W4378839441 cites W3156954244 @default.
- W4378839441 cites W3174243357 @default.
- W4378839441 cites W3183978973 @default.
- W4378839441 cites W3203704239 @default.
- W4378839441 cites W3208023024 @default.
- W4378839441 cites W3208761568 @default.
- W4378839441 cites W3210242925 @default.
- W4378839441 cites W4200549610 @default.
- W4378839441 cites W4206507393 @default.
- W4378839441 cites W4226343462 @default.
- W4378839441 cites W4293704388 @default.
- W4378839441 cites W4307730770 @default.
- W4378839441 cites W4312443924 @default.
- W4378839441 cites W4313129448 @default.
- W4378839441 doi "https://doi.org/10.1016/j.measurement.2023.113018" @default.
- W4378839441 hasPublicationYear "2023" @default.
- W4378839441 type Work @default.
- W4378839441 citedByCount "0" @default.
- W4378839441 crossrefType "journal-article" @default.
- W4378839441 hasAuthorship W4378839441A5000912392 @default.
- W4378839441 hasAuthorship W4378839441A5069879150 @default.
- W4378839441 hasAuthorship W4378839441A5086917524 @default.
- W4378839441 hasConcept C119857082 @default.
- W4378839441 hasConcept C121332964 @default.
- W4378839441 hasConcept C124101348 @default.
- W4378839441 hasConcept C127413603 @default.
- W4378839441 hasConcept C153180895 @default.
- W4378839441 hasConcept C154945302 @default.
- W4378839441 hasConcept C163258240 @default.
- W4378839441 hasConcept C176066374 @default.
- W4378839441 hasConcept C188198153 @default.
- W4378839441 hasConcept C205711294 @default.
- W4378839441 hasConcept C41008148 @default.
- W4378839441 hasConcept C43214815 @default.
- W4378839441 hasConcept C50644808 @default.
- W4378839441 hasConcept C62520636 @default.
- W4378839441 hasConcept C78519656 @default.
- W4378839441 hasConcept C8880873 @default.
- W4378839441 hasConceptScore W4378839441C119857082 @default.
- W4378839441 hasConceptScore W4378839441C121332964 @default.
- W4378839441 hasConceptScore W4378839441C124101348 @default.
- W4378839441 hasConceptScore W4378839441C127413603 @default.
- W4378839441 hasConceptScore W4378839441C153180895 @default.
- W4378839441 hasConceptScore W4378839441C154945302 @default.
- W4378839441 hasConceptScore W4378839441C163258240 @default.
- W4378839441 hasConceptScore W4378839441C176066374 @default.
- W4378839441 hasConceptScore W4378839441C188198153 @default.
- W4378839441 hasConceptScore W4378839441C205711294 @default.
- W4378839441 hasConceptScore W4378839441C41008148 @default.
- W4378839441 hasConceptScore W4378839441C43214815 @default.
- W4378839441 hasConceptScore W4378839441C50644808 @default.
- W4378839441 hasConceptScore W4378839441C62520636 @default.
- W4378839441 hasConceptScore W4378839441C78519656 @default.
- W4378839441 hasConceptScore W4378839441C8880873 @default.
- W4378839441 hasFunder F4320321540 @default.
- W4378839441 hasFunder F4320328844 @default.
- W4378839441 hasFunder F4320335960 @default.
- W4378839441 hasLocation W43788394411 @default.
- W4378839441 hasOpenAccess W4378839441 @default.
- W4378839441 hasPrimaryLocation W43788394411 @default.
- W4378839441 hasRelatedWork W2386387936 @default.
- W4378839441 hasRelatedWork W2961085424 @default.