Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378839596> ?p ?o ?g. }
- W4378839596 endingPage "115363" @default.
- W4378839596 startingPage "115363" @default.
- W4378839596 abstract "A fully decoupled, linearized, and unconditionally stable finite element method is developed to solve the Cahn-Hilliard-Navier–Stokes-Darcy model in the coupled free fluid region and porous medium region. By introducing two auxiliary energy variables, we derive the equivalent system that is consistent with the original system. The energy dissipation law of the proposed equivalent model is proven. To lay a solid foundation, we first present a coupled linearized time-stepping method for the reformulated system, and prove its unconditionally energy stability. In order to further improve the computational efficiency, special treatment for the interface conditions and the artificial compression approach are utilized to decouple the two subdomains and the Navier–Stokes equation. Therefore, with the discretization techniques of two existing auxiliary variable approaches, a fully decoupled and linearized numerical scheme can be developed, under the framework of a semi-implicit semi-explicit scheme for temporal discretizaion and Galerkin finite element method for spatial discretization. The grad-div stabilization is also employed to further improve the stability of auxiliary variable algorithm. The full discretization obeys the desired energy dissipation law without any temporal restriction. Moreover, the implementation process is discussed, including the adaptive mesh strategy to accurately capture the diffuse interface. Ample numerical experiments are performed to validate the typical features of developed numerical schemes, such as the accuracy, energy stability without restriction for time step size, and adaptive mesh refinement in space. Furthermore, we apply the proposed numerical method to simulate the shape relaxation and the Buoyancy-driven flows, which demonstrate the applicability of the proposed method." @default.
- W4378839596 created "2023-06-01" @default.
- W4378839596 creator A5026611351 @default.
- W4378839596 creator A5041708794 @default.
- W4378839596 creator A5081675173 @default.
- W4378839596 creator A5088723986 @default.
- W4378839596 date "2024-01-01" @default.
- W4378839596 modified "2023-09-29" @default.
- W4378839596 title "A fully decoupled numerical method for Cahn–Hilliard–Navier–Stokes–Darcy equations based on auxiliary variable approaches" @default.
- W4378839596 cites W1585842086 @default.
- W4378839596 cites W1979656672 @default.
- W4378839596 cites W1993283278 @default.
- W4378839596 cites W2001118081 @default.
- W4378839596 cites W2001254200 @default.
- W4378839596 cites W2008633979 @default.
- W4378839596 cites W2011966235 @default.
- W4378839596 cites W2015526039 @default.
- W4378839596 cites W2017320629 @default.
- W4378839596 cites W2027417374 @default.
- W4378839596 cites W2027509489 @default.
- W4378839596 cites W2030350543 @default.
- W4378839596 cites W2032246227 @default.
- W4378839596 cites W2035127243 @default.
- W4378839596 cites W2035346182 @default.
- W4378839596 cites W2036822565 @default.
- W4378839596 cites W2043107210 @default.
- W4378839596 cites W2045813031 @default.
- W4378839596 cites W2050969603 @default.
- W4378839596 cites W2051314355 @default.
- W4378839596 cites W2052683789 @default.
- W4378839596 cites W2054058803 @default.
- W4378839596 cites W2057180900 @default.
- W4378839596 cites W2057380076 @default.
- W4378839596 cites W2058339183 @default.
- W4378839596 cites W2058879110 @default.
- W4378839596 cites W2061391294 @default.
- W4378839596 cites W2077001143 @default.
- W4378839596 cites W2077271644 @default.
- W4378839596 cites W2077545324 @default.
- W4378839596 cites W2078273688 @default.
- W4378839596 cites W2082093556 @default.
- W4378839596 cites W2085797730 @default.
- W4378839596 cites W2087891891 @default.
- W4378839596 cites W2088910140 @default.
- W4378839596 cites W2097116154 @default.
- W4378839596 cites W2100969493 @default.
- W4378839596 cites W2103143063 @default.
- W4378839596 cites W2107589277 @default.
- W4378839596 cites W2109114364 @default.
- W4378839596 cites W2109834126 @default.
- W4378839596 cites W2128353013 @default.
- W4378839596 cites W2151085908 @default.
- W4378839596 cites W2152501918 @default.
- W4378839596 cites W2153050734 @default.
- W4378839596 cites W2156248876 @default.
- W4378839596 cites W2159736212 @default.
- W4378839596 cites W2162707720 @default.
- W4378839596 cites W2170339701 @default.
- W4378839596 cites W2200192059 @default.
- W4378839596 cites W2282835663 @default.
- W4378839596 cites W2288526001 @default.
- W4378839596 cites W2341628887 @default.
- W4378839596 cites W2473931419 @default.
- W4378839596 cites W2515206481 @default.
- W4378839596 cites W2526298107 @default.
- W4378839596 cites W2538112578 @default.
- W4378839596 cites W2542505516 @default.
- W4378839596 cites W2607356190 @default.
- W4378839596 cites W2760425501 @default.
- W4378839596 cites W2766149883 @default.
- W4378839596 cites W2767876175 @default.
- W4378839596 cites W2784357211 @default.
- W4378839596 cites W2790914254 @default.
- W4378839596 cites W2798450085 @default.
- W4378839596 cites W2806829026 @default.
- W4378839596 cites W2905056640 @default.
- W4378839596 cites W2911401788 @default.
- W4378839596 cites W2926294467 @default.
- W4378839596 cites W2952204387 @default.
- W4378839596 cites W2955362361 @default.
- W4378839596 cites W2963406533 @default.
- W4378839596 cites W2963577202 @default.
- W4378839596 cites W2963801809 @default.
- W4378839596 cites W2964580220 @default.
- W4378839596 cites W2965650504 @default.
- W4378839596 cites W2966020116 @default.
- W4378839596 cites W2969676143 @default.
- W4378839596 cites W2971324885 @default.
- W4378839596 cites W2980214627 @default.
- W4378839596 cites W2982430423 @default.
- W4378839596 cites W2991443752 @default.
- W4378839596 cites W3004767590 @default.
- W4378839596 cites W3011190975 @default.
- W4378839596 cites W3012062350 @default.
- W4378839596 cites W3049477460 @default.
- W4378839596 cites W3106398254 @default.
- W4378839596 cites W3123164424 @default.
- W4378839596 cites W3132005250 @default.