Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378840507> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4378840507 abstract "HomeRadiology: Artificial IntelligenceVol. 5, No. 3 PreviousNext CommentaryThe Role of Federated Learning Models in Medical ImagingLily Kwak , Harrison BaiLily Kwak , Harrison BaiAuthor AffiliationsFrom the Department of Radiology and Radiological Science, Johns Hopkins Medicine, 1800 Orleans St, Baltimore, MD 21287.Address correspondence to L.K. (email: [email protected]).Lily Kwak Harrison BaiPublished Online:May 31 2023MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Gupta S, Kumar S, Chang K, Lu C, Singh P, Kalpathy-Cramer J. Collaborative privacy-preserving approaches for distributed deep learning using multi-institutional data. RadioGraphics 2023;43(4):e220107. Link, Google Scholar2. Luo G, Liu T, Lu J, et al. Influence of data distribution on federated learning performance in tumor segmentation. Radiol Artif Intell 2023;5(3): e220082. Link, Google Scholar3. Li X, Gu Y, Dvornek N, Staib LH, Ventola P, Duncan JS. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med Image Anal 2020;65:101765. Crossref, Medline, Google Scholar4. Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. Brainlesion 2019;11383:92–104. Medline, Google Scholar5. Li W, Milletarì F, Xu D, et al. Privacy-preserving federated brain tumour segmentation. In: Suk HI, Liu M, Yan P, Lian C, eds.Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science, vol 11861. Springer, 2019; 133–141. Crossref, Google Scholar6. Pati S, Baid U, Edwards B, et al. Federated learning enables big data for rare cancer boundary detection. Nat Commun 2022;13(1):7346. [Published correction appears in Nat Commun 2023;14(1):436.] Crossref, Medline, Google Scholar7. Dayan I, Roth HR, Zhong A, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med 2021;27(10):1735–1743. Crossref, Medline, Google Scholar8. Dou Q, So TY, Jiang M, et al. Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. NPJ Digit Med 2021;4(1):60. [Published correction appears in NPJ Digit Med 2022;5(1):56.] Crossref, Medline, Google Scholar9. Candemir S, Nguyen XV, Folio LR, Prevedello LM. Training strategies for radiology deep learning models in data-limited scenarios. Radiol Artif Intell 2021;3(6):e210014. Link, Google ScholarArticle HistoryReceived: Apr 24 2023Revision requested: Apr 28 2023Revision received: May 4 2023Accepted: May 9 2023Published online: May 31 2023 FiguresReferencesRelatedDetailsAccompanying This ArticleInfluence of Data Distribution on Federated Learning Performance in Tumor SegmentationApr 26 2023Radiology: Artificial IntelligenceRecommended Articles Putting the Pieces Together: Deep Learning for Knee MRI Multitissue Abnormality Detection and Severity GradingRadiology: Artificial Intelligence2021Volume: 3Issue: 3Wheat from the Chaff: Denoising Functional MRI DataRadiology2021Volume: 299Issue: 1pp. 49-50Trainee Research Prizes from the 2021 RSNA Scientific Assembly and Annual MeetingRadiology2022Volume: 303Issue: 1pp. 5-8Staying Connected: The Relevance of Motor-specific Transcallosal FibersRadiology2021Volume: 302Issue: 3pp. 650-651Trainee Research Prizes from the 2022 RSNA Scientific Assembly and Annual MeetingRadiology2023Volume: 307Issue: 4See More RSNA Education Exhibits Advanced Imaging Evaluation of Pediatric Language Pathways: Where Do We StandDigital Posters2022Radiomic Of Glioma: Multiparametric MRI Correlates Of Genotyping And Molecular Markers.Digital Posters2021Toolkit for Functional MRI Assessment of Peritumoral Non-Enhancing Areas in Brain LesionsDigital Posters2019 RSNA Case Collection Large volume barium aspirationRSNA Case Collection2021Central Pontine MyelinolisisRSNA Case Collection2021Diffuse Midline GliomaRSNA Case Collection2021 Vol. 5, No. 3 Metrics Altmetric Score PDF download" @default.
- W4378840507 created "2023-06-01" @default.
- W4378840507 creator A5080494857 @default.
- W4378840507 creator A5080679036 @default.
- W4378840507 date "2023-05-01" @default.
- W4378840507 modified "2023-09-30" @default.
- W4378840507 title "The Role of Federated Learning Models in Medical Imaging" @default.
- W4378840507 cites W2897230576 @default.
- W4378840507 cites W2979637109 @default.
- W4378840507 cites W3040685212 @default.
- W4378840507 cites W3150684546 @default.
- W4378840507 cites W3200840849 @default.
- W4378840507 cites W3204277253 @default.
- W4378840507 cites W4310852955 @default.
- W4378840507 cites W4322757179 @default.
- W4378840507 cites W4367050586 @default.
- W4378840507 doi "https://doi.org/10.1148/ryai.230136" @default.
- W4378840507 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37293343" @default.
- W4378840507 hasPublicationYear "2023" @default.
- W4378840507 type Work @default.
- W4378840507 citedByCount "1" @default.
- W4378840507 countsByYear W43788405072023 @default.
- W4378840507 crossrefType "journal-article" @default.
- W4378840507 hasAuthorship W4378840507A5080494857 @default.
- W4378840507 hasAuthorship W4378840507A5080679036 @default.
- W4378840507 hasBestOaLocation W43788405072 @default.
- W4378840507 hasConcept C108583219 @default.
- W4378840507 hasConcept C154945302 @default.
- W4378840507 hasConcept C161191863 @default.
- W4378840507 hasConcept C17744445 @default.
- W4378840507 hasConcept C199539241 @default.
- W4378840507 hasConcept C23123220 @default.
- W4378840507 hasConcept C2779473830 @default.
- W4378840507 hasConcept C31601959 @default.
- W4378840507 hasConcept C41008148 @default.
- W4378840507 hasConcept C71924100 @default.
- W4378840507 hasConcept C89600930 @default.
- W4378840507 hasConceptScore W4378840507C108583219 @default.
- W4378840507 hasConceptScore W4378840507C154945302 @default.
- W4378840507 hasConceptScore W4378840507C161191863 @default.
- W4378840507 hasConceptScore W4378840507C17744445 @default.
- W4378840507 hasConceptScore W4378840507C199539241 @default.
- W4378840507 hasConceptScore W4378840507C23123220 @default.
- W4378840507 hasConceptScore W4378840507C2779473830 @default.
- W4378840507 hasConceptScore W4378840507C31601959 @default.
- W4378840507 hasConceptScore W4378840507C41008148 @default.
- W4378840507 hasConceptScore W4378840507C71924100 @default.
- W4378840507 hasConceptScore W4378840507C89600930 @default.
- W4378840507 hasIssue "3" @default.
- W4378840507 hasLocation W43788405071 @default.
- W4378840507 hasLocation W43788405072 @default.
- W4378840507 hasLocation W43788405073 @default.
- W4378840507 hasOpenAccess W4378840507 @default.
- W4378840507 hasPrimaryLocation W43788405071 @default.
- W4378840507 hasRelatedWork W2731899572 @default.
- W4378840507 hasRelatedWork W2790662084 @default.
- W4378840507 hasRelatedWork W2954384599 @default.
- W4378840507 hasRelatedWork W2960184797 @default.
- W4378840507 hasRelatedWork W3104734424 @default.
- W4378840507 hasRelatedWork W3175977030 @default.
- W4378840507 hasRelatedWork W3209779739 @default.
- W4378840507 hasRelatedWork W4226289457 @default.
- W4378840507 hasRelatedWork W4281780675 @default.
- W4378840507 hasRelatedWork W4285827401 @default.
- W4378840507 hasVolume "5" @default.
- W4378840507 isParatext "false" @default.
- W4378840507 isRetracted "false" @default.
- W4378840507 workType "article" @default.