Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378876715> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4378876715 endingPage "361" @default.
- W4378876715 startingPage "352" @default.
- W4378876715 abstract "Agriculture is one of the main contributors to carbon emissions. Understanding different processes involved in farming and estimating the carbon emissions in each step can help in accurately calculating the carbon factor and support in optimizing and reducing the carbon emissions. Potato is a popular food product cultivated across the world. Potato farming involves several processes such as preparing the land, using fertilizers and manures, irrigation, and plowing, and all these steps have been contemplated to generate carbon emissions. This article investigates the steps involved in potato cultivation as a case study and generates standardized features related to carbon emissions in each step. Different machine learning and deep learning algorithms are used to model these standard features. This research predicts the carbon emission using different regression models such as random Forest, multiple linear regression, lasso regression, K-Nearest Neighbour, and neural network regression and finally compares them based on the metrics of root-mean-square error (RMSE) and $$R^2$$ . The results show that all the models have comparable performance with a $$R^2$$ score very close to 1 and very low RMSE. The novelty of the work is in introducing standard features for modeling carbon emissions in agriculture which help to streamline different farming datasets even across different crops." @default.
- W4378876715 created "2023-06-01" @default.
- W4378876715 creator A5017257483 @default.
- W4378876715 creator A5028548557 @default.
- W4378876715 creator A5092057061 @default.
- W4378876715 date "2023-01-01" @default.
- W4378876715 modified "2023-10-16" @default.
- W4378876715 title "ML-Based Prediction of Carbon Emissions for Potato Farms in Iran" @default.
- W4378876715 cites W1818640277 @default.
- W4378876715 cites W1964872808 @default.
- W4378876715 cites W2013414890 @default.
- W4378876715 cites W2123098628 @default.
- W4378876715 cites W2159631315 @default.
- W4378876715 cites W2319263386 @default.
- W4378876715 cites W2540218757 @default.
- W4378876715 cites W2562477323 @default.
- W4378876715 cites W2789716872 @default.
- W4378876715 cites W2792091148 @default.
- W4378876715 cites W2913432556 @default.
- W4378876715 cites W2989959769 @default.
- W4378876715 cites W3032628389 @default.
- W4378876715 cites W3094580886 @default.
- W4378876715 cites W3171327926 @default.
- W4378876715 cites W3187965130 @default.
- W4378876715 cites W3207425101 @default.
- W4378876715 doi "https://doi.org/10.1007/978-3-031-34107-6_28" @default.
- W4378876715 hasPublicationYear "2023" @default.
- W4378876715 type Work @default.
- W4378876715 citedByCount "0" @default.
- W4378876715 crossrefType "book-chapter" @default.
- W4378876715 hasAuthorship W4378876715A5017257483 @default.
- W4378876715 hasAuthorship W4378876715A5028548557 @default.
- W4378876715 hasAuthorship W4378876715A5092057061 @default.
- W4378876715 hasConcept C104779481 @default.
- W4378876715 hasConcept C105795698 @default.
- W4378876715 hasConcept C11413529 @default.
- W4378876715 hasConcept C118518473 @default.
- W4378876715 hasConcept C119857082 @default.
- W4378876715 hasConcept C136764020 @default.
- W4378876715 hasConcept C139945424 @default.
- W4378876715 hasConcept C140205800 @default.
- W4378876715 hasConcept C166957645 @default.
- W4378876715 hasConcept C169258074 @default.
- W4378876715 hasConcept C18903297 @default.
- W4378876715 hasConcept C205649164 @default.
- W4378876715 hasConcept C33923547 @default.
- W4378876715 hasConcept C37616216 @default.
- W4378876715 hasConcept C39432304 @default.
- W4378876715 hasConcept C41008148 @default.
- W4378876715 hasConcept C47737302 @default.
- W4378876715 hasConcept C48921125 @default.
- W4378876715 hasConcept C83546350 @default.
- W4378876715 hasConcept C86803240 @default.
- W4378876715 hasConceptScore W4378876715C104779481 @default.
- W4378876715 hasConceptScore W4378876715C105795698 @default.
- W4378876715 hasConceptScore W4378876715C11413529 @default.
- W4378876715 hasConceptScore W4378876715C118518473 @default.
- W4378876715 hasConceptScore W4378876715C119857082 @default.
- W4378876715 hasConceptScore W4378876715C136764020 @default.
- W4378876715 hasConceptScore W4378876715C139945424 @default.
- W4378876715 hasConceptScore W4378876715C140205800 @default.
- W4378876715 hasConceptScore W4378876715C166957645 @default.
- W4378876715 hasConceptScore W4378876715C169258074 @default.
- W4378876715 hasConceptScore W4378876715C18903297 @default.
- W4378876715 hasConceptScore W4378876715C205649164 @default.
- W4378876715 hasConceptScore W4378876715C33923547 @default.
- W4378876715 hasConceptScore W4378876715C37616216 @default.
- W4378876715 hasConceptScore W4378876715C39432304 @default.
- W4378876715 hasConceptScore W4378876715C41008148 @default.
- W4378876715 hasConceptScore W4378876715C47737302 @default.
- W4378876715 hasConceptScore W4378876715C48921125 @default.
- W4378876715 hasConceptScore W4378876715C83546350 @default.
- W4378876715 hasConceptScore W4378876715C86803240 @default.
- W4378876715 hasLocation W43788767151 @default.
- W4378876715 hasOpenAccess W4378876715 @default.
- W4378876715 hasPrimaryLocation W43788767151 @default.
- W4378876715 hasRelatedWork W2917200448 @default.
- W4378876715 hasRelatedWork W3028487170 @default.
- W4378876715 hasRelatedWork W3095627713 @default.
- W4378876715 hasRelatedWork W3100504617 @default.
- W4378876715 hasRelatedWork W4300642372 @default.
- W4378876715 hasRelatedWork W4323568033 @default.
- W4378876715 hasRelatedWork W4324137334 @default.
- W4378876715 hasRelatedWork W4375953125 @default.
- W4378876715 hasRelatedWork W4377822244 @default.
- W4378876715 hasRelatedWork W4378192104 @default.
- W4378876715 isParatext "false" @default.
- W4378876715 isRetracted "false" @default.
- W4378876715 workType "book-chapter" @default.