Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378903044> ?p ?o ?g. }
- W4378903044 endingPage "4401" @default.
- W4378903044 startingPage "4401" @default.
- W4378903044 abstract "Short-term load forecasting is critical to ensuring the safe and stable operation of the power system. To this end, this study proposes a load power prediction model that utilizes outlier correction, decomposition, and ensemble reinforcement learning. The novelty of this study is as follows: firstly, the Hampel identifier (HI) is employed to correct outliers in the original data; secondly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to extract the waveform characteristics of the data fully; and, finally, the temporal convolutional network, extreme learning machine, and gate recurrent unit are selected as the basic learners for forecasting load power data. An ensemble reinforcement learning algorithm based on Q-learning was adopted to generate optimal ensemble weights, and the predictive results of the three basic learners are combined. The experimental results of the models for three real load power datasets show that: (a) the utilization of HI improves the model’s forecasting result; (b) CEEMDAN is superior to other decomposition algorithms in forecasting performance; and (c) the proposed ensemble method, based on the Q-learning algorithm, outperforms three single models in accuracy, and achieves smaller prediction errors." @default.
- W4378903044 created "2023-06-01" @default.
- W4378903044 creator A5020348343 @default.
- W4378903044 creator A5044301848 @default.
- W4378903044 creator A5048797489 @default.
- W4378903044 creator A5051298577 @default.
- W4378903044 creator A5059307791 @default.
- W4378903044 date "2023-05-30" @default.
- W4378903044 modified "2023-10-16" @default.
- W4378903044 title "Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning" @default.
- W4378903044 cites W1967690950 @default.
- W4378903044 cites W2029403485 @default.
- W4378903044 cites W2040604977 @default.
- W4378903044 cites W2081060955 @default.
- W4378903044 cites W2108587916 @default.
- W4378903044 cites W2111072639 @default.
- W4378903044 cites W2125056386 @default.
- W4378903044 cites W2586259521 @default.
- W4378903044 cites W2597866042 @default.
- W4378903044 cites W2598530959 @default.
- W4378903044 cites W2754252319 @default.
- W4378903044 cites W2790566149 @default.
- W4378903044 cites W2802544663 @default.
- W4378903044 cites W2939347301 @default.
- W4378903044 cites W2991626282 @default.
- W4378903044 cites W3002730961 @default.
- W4378903044 cites W3011699874 @default.
- W4378903044 cites W3017073098 @default.
- W4378903044 cites W3023213286 @default.
- W4378903044 cites W3081608310 @default.
- W4378903044 cites W3087798270 @default.
- W4378903044 cites W3094224917 @default.
- W4378903044 cites W3142394151 @default.
- W4378903044 cites W3156856498 @default.
- W4378903044 cites W3200680133 @default.
- W4378903044 cites W3214016374 @default.
- W4378903044 cites W32403112 @default.
- W4378903044 cites W4210446036 @default.
- W4378903044 cites W4220691022 @default.
- W4378903044 cites W4234967753 @default.
- W4378903044 cites W4280636881 @default.
- W4378903044 cites W4283743430 @default.
- W4378903044 cites W4288032528 @default.
- W4378903044 cites W4299401133 @default.
- W4378903044 cites W4306876858 @default.
- W4378903044 cites W4308718204 @default.
- W4378903044 cites W4309484088 @default.
- W4378903044 cites W4313646203 @default.
- W4378903044 cites W4319159759 @default.
- W4378903044 cites W4328110731 @default.
- W4378903044 cites W4376453192 @default.
- W4378903044 doi "https://doi.org/10.3390/en16114401" @default.
- W4378903044 hasPublicationYear "2023" @default.
- W4378903044 type Work @default.
- W4378903044 citedByCount "1" @default.
- W4378903044 countsByYear W43789030442023 @default.
- W4378903044 crossrefType "journal-article" @default.
- W4378903044 hasAuthorship W4378903044A5020348343 @default.
- W4378903044 hasAuthorship W4378903044A5044301848 @default.
- W4378903044 hasAuthorship W4378903044A5048797489 @default.
- W4378903044 hasAuthorship W4378903044A5051298577 @default.
- W4378903044 hasAuthorship W4378903044A5059307791 @default.
- W4378903044 hasBestOaLocation W43789030441 @default.
- W4378903044 hasConcept C119857082 @default.
- W4378903044 hasConcept C119898033 @default.
- W4378903044 hasConcept C121332964 @default.
- W4378903044 hasConcept C154945302 @default.
- W4378903044 hasConcept C41008148 @default.
- W4378903044 hasConcept C45942800 @default.
- W4378903044 hasConcept C61797465 @default.
- W4378903044 hasConcept C62520636 @default.
- W4378903044 hasConcept C739882 @default.
- W4378903044 hasConcept C79337645 @default.
- W4378903044 hasConcept C97541855 @default.
- W4378903044 hasConceptScore W4378903044C119857082 @default.
- W4378903044 hasConceptScore W4378903044C119898033 @default.
- W4378903044 hasConceptScore W4378903044C121332964 @default.
- W4378903044 hasConceptScore W4378903044C154945302 @default.
- W4378903044 hasConceptScore W4378903044C41008148 @default.
- W4378903044 hasConceptScore W4378903044C45942800 @default.
- W4378903044 hasConceptScore W4378903044C61797465 @default.
- W4378903044 hasConceptScore W4378903044C62520636 @default.
- W4378903044 hasConceptScore W4378903044C739882 @default.
- W4378903044 hasConceptScore W4378903044C79337645 @default.
- W4378903044 hasConceptScore W4378903044C97541855 @default.
- W4378903044 hasIssue "11" @default.
- W4378903044 hasLocation W43789030441 @default.
- W4378903044 hasOpenAccess W4378903044 @default.
- W4378903044 hasPrimaryLocation W43789030441 @default.
- W4378903044 hasRelatedWork W2991274265 @default.
- W4378903044 hasRelatedWork W3136979370 @default.
- W4378903044 hasRelatedWork W3151529617 @default.
- W4378903044 hasRelatedWork W3175281560 @default.
- W4378903044 hasRelatedWork W4281560664 @default.
- W4378903044 hasRelatedWork W4285741730 @default.
- W4378903044 hasRelatedWork W4292969247 @default.
- W4378903044 hasRelatedWork W4318677156 @default.
- W4378903044 hasRelatedWork W4376643315 @default.