Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378904037> ?p ?o ?g. }
- W4378904037 endingPage "1793" @default.
- W4378904037 startingPage "1782" @default.
- W4378904037 abstract "Abstract The objective of this study is to analyse the diffusion rule of the contrast media in multi-phase delayed enhanced magnetic resonance (MR) T1 images using radiomics and to construct an automatic classification and segmentation model of brain metastases (BM) based on support vector machine (SVM) and Dpn-UNet. A total of 189 BM patients with 1047 metastases were enrolled. Contrast-enhanced MR images were obtained at 1, 3, 5, 10, 18, and 20 min following contrast medium injection. The tumour target volume was delineated, and the radiomics features were extracted and analysed. BM segmentation and classification models in the MR images with different enhancement phases were constructed using Dpn-UNet and SVM, and differences in the BM segmentation and classification models with different enhancement times were compared. (1) The signal intensity for BM decreased with time delay and peaked at 3 min. (2) Among the 144 optimal radiomics features, 22 showed strong correlation with time (highest R -value = 0.82), while 41 showed strong correlation with volume (highest R -value = 0.99). (3) The average dice similarity coefficients of both the training and test sets were the highest at 10 min for the automatic segmentation of BM, reaching 0.92 and 0.82, respectively. (4) The areas under the curve (AUCs) for the classification of BM pathology type applying single-phase MRI was the highest at 10 min, reaching 0.674. The AUC for the classification of BM by applying the six-phase image combination was the highest, reaching 0.9596, and improved by 42.3% compared with that by applying single-phase images at 10 min. The dynamic changes of contrast media diffusion in BM can be reflected by multi-phase delayed enhancement based on radiomics, which can more objectively reflect the pathological types and significantly improve the accuracy of BM segmentation and classification." @default.
- W4378904037 created "2023-06-01" @default.
- W4378904037 creator A5005426960 @default.
- W4378904037 creator A5008398353 @default.
- W4378904037 creator A5014708668 @default.
- W4378904037 creator A5034357412 @default.
- W4378904037 creator A5057196417 @default.
- W4378904037 creator A5069278482 @default.
- W4378904037 creator A5070206463 @default.
- W4378904037 creator A5076587936 @default.
- W4378904037 creator A5088053343 @default.
- W4378904037 date "2023-05-31" @default.
- W4378904037 modified "2023-10-01" @default.
- W4378904037 title "An Effective Approach to Improve the Automatic Segmentation and Classification Accuracy of Brain Metastasis by Combining Multi-phase Delay Enhanced MR Images" @default.
- W4378904037 cites W104290114 @default.
- W4378904037 cites W1537483891 @default.
- W4378904037 cites W1809498611 @default.
- W4378904037 cites W1999946694 @default.
- W4378904037 cites W2016908822 @default.
- W4378904037 cites W2046012377 @default.
- W4378904037 cites W2065354989 @default.
- W4378904037 cites W2083255661 @default.
- W4378904037 cites W2088952991 @default.
- W4378904037 cites W2165255642 @default.
- W4378904037 cites W2168127946 @default.
- W4378904037 cites W2169010419 @default.
- W4378904037 cites W2178002579 @default.
- W4378904037 cites W2185805785 @default.
- W4378904037 cites W2318373634 @default.
- W4378904037 cites W2596055975 @default.
- W4378904037 cites W2758789660 @default.
- W4378904037 cites W2767128594 @default.
- W4378904037 cites W2781751190 @default.
- W4378904037 cites W2782139497 @default.
- W4378904037 cites W2802112167 @default.
- W4378904037 cites W2905399995 @default.
- W4378904037 cites W2912598453 @default.
- W4378904037 cites W2921321912 @default.
- W4378904037 cites W2946282417 @default.
- W4378904037 cites W2963446989 @default.
- W4378904037 cites W3036636002 @default.
- W4378904037 cites W3085873496 @default.
- W4378904037 cites W3087821813 @default.
- W4378904037 cites W3092032247 @default.
- W4378904037 cites W3130736558 @default.
- W4378904037 cites W3152866569 @default.
- W4378904037 cites W4211260961 @default.
- W4378904037 cites W4302010749 @default.
- W4378904037 doi "https://doi.org/10.1007/s10278-023-00856-3" @default.
- W4378904037 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37259008" @default.
- W4378904037 hasPublicationYear "2023" @default.
- W4378904037 type Work @default.
- W4378904037 citedByCount "0" @default.
- W4378904037 crossrefType "journal-article" @default.
- W4378904037 hasAuthorship W4378904037A5005426960 @default.
- W4378904037 hasAuthorship W4378904037A5008398353 @default.
- W4378904037 hasAuthorship W4378904037A5014708668 @default.
- W4378904037 hasAuthorship W4378904037A5034357412 @default.
- W4378904037 hasAuthorship W4378904037A5057196417 @default.
- W4378904037 hasAuthorship W4378904037A5069278482 @default.
- W4378904037 hasAuthorship W4378904037A5070206463 @default.
- W4378904037 hasAuthorship W4378904037A5076587936 @default.
- W4378904037 hasAuthorship W4378904037A5088053343 @default.
- W4378904037 hasBestOaLocation W43789040371 @default.
- W4378904037 hasConcept C103278499 @default.
- W4378904037 hasConcept C115961682 @default.
- W4378904037 hasConcept C117220453 @default.
- W4378904037 hasConcept C12267149 @default.
- W4378904037 hasConcept C126838900 @default.
- W4378904037 hasConcept C143409427 @default.
- W4378904037 hasConcept C153180895 @default.
- W4378904037 hasConcept C154945302 @default.
- W4378904037 hasConcept C2524010 @default.
- W4378904037 hasConcept C2778559731 @default.
- W4378904037 hasConcept C2989005 @default.
- W4378904037 hasConcept C33923547 @default.
- W4378904037 hasConcept C41008148 @default.
- W4378904037 hasConcept C71924100 @default.
- W4378904037 hasConcept C89600930 @default.
- W4378904037 hasConceptScore W4378904037C103278499 @default.
- W4378904037 hasConceptScore W4378904037C115961682 @default.
- W4378904037 hasConceptScore W4378904037C117220453 @default.
- W4378904037 hasConceptScore W4378904037C12267149 @default.
- W4378904037 hasConceptScore W4378904037C126838900 @default.
- W4378904037 hasConceptScore W4378904037C143409427 @default.
- W4378904037 hasConceptScore W4378904037C153180895 @default.
- W4378904037 hasConceptScore W4378904037C154945302 @default.
- W4378904037 hasConceptScore W4378904037C2524010 @default.
- W4378904037 hasConceptScore W4378904037C2778559731 @default.
- W4378904037 hasConceptScore W4378904037C2989005 @default.
- W4378904037 hasConceptScore W4378904037C33923547 @default.
- W4378904037 hasConceptScore W4378904037C41008148 @default.
- W4378904037 hasConceptScore W4378904037C71924100 @default.
- W4378904037 hasConceptScore W4378904037C89600930 @default.
- W4378904037 hasFunder F4320333596 @default.
- W4378904037 hasIssue "4" @default.
- W4378904037 hasLocation W43789040371 @default.
- W4378904037 hasLocation W43789040372 @default.