Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378905908> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4378905908 endingPage "1022" @default.
- W4378905908 startingPage "1008" @default.
- W4378905908 abstract "Adolescents in higher education are more prone to Avoidant Personality Disorder (AVPD), which strongly affects academic achievement. The goal of this study was to create models for accurate prediction of the likelihood of Avoidant Personality Disorder among students in higher education. Information Gain, Gain Ratio, and Wrapper Approach are used as feature selection methods combined with data resampling techniques and machine learning, including Multi-Layer Perceptron Neural Network, Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machine. The findings revealed that the Wrapper approach gave higher accuracy than Information Gain and Gain Ratio approach. Further, using the Gain Ratio approach gives the model a slightly higher efficiency than the Information Gain. Furthermore, when comparing feature selection and data resampling, it was found that the model using feature selection had more higher model efficiency than data resampling alone. Additionally, combining the Synthetic Minority Over-sampling Technique with Edited Nearest Neighbor (SMOTE-ENN) considerably increased the model’s effectiveness. Finally, the model’s efficiency was at its maximum, with an accuracy of 95.52%, when the Wrapper approach was used in conjunction with the Synthetic Minority Over-sampling Technique, the Edited Nearest Neighbor algorithm, and the Multi-Layer Perceptron Neural Network." @default.
- W4378905908 created "2023-06-01" @default.
- W4378905908 creator A5087789218 @default.
- W4378905908 creator A5088421085 @default.
- W4378905908 date "2023-05-29" @default.
- W4378905908 modified "2023-09-28" @default.
- W4378905908 title "Improving the Avoidant Personality Disorder Prediction for Higher Education Using SMOTE-ENN and Multi-Layer Perceptron Neural Network" @default.
- W4378905908 doi "https://doi.org/10.18421/tem122-47" @default.
- W4378905908 hasPublicationYear "2023" @default.
- W4378905908 type Work @default.
- W4378905908 citedByCount "0" @default.
- W4378905908 crossrefType "journal-article" @default.
- W4378905908 hasAuthorship W4378905908A5087789218 @default.
- W4378905908 hasAuthorship W4378905908A5088421085 @default.
- W4378905908 hasBestOaLocation W43789059081 @default.
- W4378905908 hasConcept C119857082 @default.
- W4378905908 hasConcept C12267149 @default.
- W4378905908 hasConcept C124101348 @default.
- W4378905908 hasConcept C138885662 @default.
- W4378905908 hasConcept C148483581 @default.
- W4378905908 hasConcept C150921843 @default.
- W4378905908 hasConcept C153180895 @default.
- W4378905908 hasConcept C154945302 @default.
- W4378905908 hasConcept C179717631 @default.
- W4378905908 hasConcept C202185110 @default.
- W4378905908 hasConcept C2776401178 @default.
- W4378905908 hasConcept C41008148 @default.
- W4378905908 hasConcept C41895202 @default.
- W4378905908 hasConcept C50644808 @default.
- W4378905908 hasConcept C52001869 @default.
- W4378905908 hasConcept C60908668 @default.
- W4378905908 hasConceptScore W4378905908C119857082 @default.
- W4378905908 hasConceptScore W4378905908C12267149 @default.
- W4378905908 hasConceptScore W4378905908C124101348 @default.
- W4378905908 hasConceptScore W4378905908C138885662 @default.
- W4378905908 hasConceptScore W4378905908C148483581 @default.
- W4378905908 hasConceptScore W4378905908C150921843 @default.
- W4378905908 hasConceptScore W4378905908C153180895 @default.
- W4378905908 hasConceptScore W4378905908C154945302 @default.
- W4378905908 hasConceptScore W4378905908C179717631 @default.
- W4378905908 hasConceptScore W4378905908C202185110 @default.
- W4378905908 hasConceptScore W4378905908C2776401178 @default.
- W4378905908 hasConceptScore W4378905908C41008148 @default.
- W4378905908 hasConceptScore W4378905908C41895202 @default.
- W4378905908 hasConceptScore W4378905908C50644808 @default.
- W4378905908 hasConceptScore W4378905908C52001869 @default.
- W4378905908 hasConceptScore W4378905908C60908668 @default.
- W4378905908 hasLocation W43789059081 @default.
- W4378905908 hasOpenAccess W4378905908 @default.
- W4378905908 hasPrimaryLocation W43789059081 @default.
- W4378905908 hasRelatedWork W2754510604 @default.
- W4378905908 hasRelatedWork W2979979539 @default.
- W4378905908 hasRelatedWork W3014147770 @default.
- W4378905908 hasRelatedWork W3105251098 @default.
- W4378905908 hasRelatedWork W3168994312 @default.
- W4378905908 hasRelatedWork W3193301557 @default.
- W4378905908 hasRelatedWork W3210877509 @default.
- W4378905908 hasRelatedWork W4221021152 @default.
- W4378905908 hasRelatedWork W4280611221 @default.
- W4378905908 hasRelatedWork W4316082230 @default.
- W4378905908 isParatext "false" @default.
- W4378905908 isRetracted "false" @default.
- W4378905908 workType "article" @default.