Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378907565> ?p ?o ?g. }
- W4378907565 endingPage "424" @default.
- W4378907565 startingPage "411" @default.
- W4378907565 abstract "Artificial intelligence (AI)-based predictive models are being used to foster a precision medicine approach to treat complex chronic diseases such as autoimmune and autoinflammatory disorders (AIIDs). In the past few years the first models of systemic lupus erythematosus (SLE), primary Sjögren syndrome (pSS), and rheumatoid arthritis (RA) have been produced by molecular profiling of patients using omic technologies and integrating the data with AI. These advances have confirmed a complex pathophysiology involving multiple proinflammatory pathways and also provide evidence for shared molecular dysregulation across different AIIDs. I discuss how models are used to stratify patients, assess causality in pathophysiology, design drug candidates in silico, and predict drug efficacy in virtual patients. By relating individual patient characteristics to the predicted properties of millions of drug candidates, these models can improve the management of AIIDs through more personalized treatments." @default.
- W4378907565 created "2023-06-01" @default.
- W4378907565 creator A5035090767 @default.
- W4378907565 date "2023-07-01" @default.
- W4378907565 modified "2023-10-01" @default.
- W4378907565 title "Artificial intelligence-driven drug development against autoimmune diseases" @default.
- W4378907565 cites W1540298277 @default.
- W4378907565 cites W2058867629 @default.
- W4378907565 cites W2060427373 @default.
- W4378907565 cites W2083934875 @default.
- W4378907565 cites W2131220803 @default.
- W4378907565 cites W2302501749 @default.
- W4378907565 cites W2321809676 @default.
- W4378907565 cites W2538361155 @default.
- W4378907565 cites W2560758606 @default.
- W4378907565 cites W2784849976 @default.
- W4378907565 cites W2792445736 @default.
- W4378907565 cites W2793230628 @default.
- W4378907565 cites W2804587111 @default.
- W4378907565 cites W2804865756 @default.
- W4378907565 cites W2810708941 @default.
- W4378907565 cites W2883029808 @default.
- W4378907565 cites W2884630794 @default.
- W4378907565 cites W2909054118 @default.
- W4378907565 cites W2937307539 @default.
- W4378907565 cites W2948686255 @default.
- W4378907565 cites W2949631571 @default.
- W4378907565 cites W2955651783 @default.
- W4378907565 cites W2976964184 @default.
- W4378907565 cites W2992497645 @default.
- W4378907565 cites W2994900199 @default.
- W4378907565 cites W3001964195 @default.
- W4378907565 cites W3004709581 @default.
- W4378907565 cites W3009482910 @default.
- W4378907565 cites W3010152544 @default.
- W4378907565 cites W3010274200 @default.
- W4378907565 cites W3013945520 @default.
- W4378907565 cites W3014312333 @default.
- W4378907565 cites W3014325962 @default.
- W4378907565 cites W3015211672 @default.
- W4378907565 cites W3022623176 @default.
- W4378907565 cites W3022788428 @default.
- W4378907565 cites W3035878234 @default.
- W4378907565 cites W3044740575 @default.
- W4378907565 cites W3046718717 @default.
- W4378907565 cites W3047834699 @default.
- W4378907565 cites W3093762626 @default.
- W4378907565 cites W3110936251 @default.
- W4378907565 cites W3113299032 @default.
- W4378907565 cites W3118552580 @default.
- W4378907565 cites W3132078448 @default.
- W4378907565 cites W3135437183 @default.
- W4378907565 cites W3142652285 @default.
- W4378907565 cites W3156522942 @default.
- W4378907565 cites W3159064895 @default.
- W4378907565 cites W3160207928 @default.
- W4378907565 cites W3161913696 @default.
- W4378907565 cites W3167229729 @default.
- W4378907565 cites W3168601105 @default.
- W4378907565 cites W3173692280 @default.
- W4378907565 cites W3177828909 @default.
- W4378907565 cites W3179441102 @default.
- W4378907565 cites W3180736203 @default.
- W4378907565 cites W3181416292 @default.
- W4378907565 cites W3184569878 @default.
- W4378907565 cites W3185209563 @default.
- W4378907565 cites W3186351623 @default.
- W4378907565 cites W3200866211 @default.
- W4378907565 cites W3202386342 @default.
- W4378907565 cites W3204202206 @default.
- W4378907565 cites W3206411367 @default.
- W4378907565 cites W3206798151 @default.
- W4378907565 cites W3215657432 @default.
- W4378907565 cites W4210703683 @default.
- W4378907565 cites W4210852924 @default.
- W4378907565 cites W4223983217 @default.
- W4378907565 cites W4226055814 @default.
- W4378907565 cites W4280498362 @default.
- W4378907565 cites W4281401786 @default.
- W4378907565 cites W4281626350 @default.
- W4378907565 cites W4283221446 @default.
- W4378907565 cites W4283790004 @default.
- W4378907565 cites W4283816709 @default.
- W4378907565 cites W4292599015 @default.
- W4378907565 cites W4295725709 @default.
- W4378907565 cites W4309045980 @default.
- W4378907565 cites W4315871740 @default.
- W4378907565 cites W4316507348 @default.
- W4378907565 cites W4317708779 @default.
- W4378907565 cites W4364377581 @default.
- W4378907565 cites W3153399859 @default.
- W4378907565 doi "https://doi.org/10.1016/j.tips.2023.04.005" @default.
- W4378907565 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37268540" @default.
- W4378907565 hasPublicationYear "2023" @default.
- W4378907565 type Work @default.
- W4378907565 citedByCount "2" @default.
- W4378907565 countsByYear W43789075652023 @default.
- W4378907565 crossrefType "journal-article" @default.