Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378907583> ?p ?o ?g. }
- W4378907583 endingPage "4423" @default.
- W4378907583 startingPage "4423" @default.
- W4378907583 abstract "Lithium-ion batteries play a vital role in many systems and applications, making them the most commonly used battery energy storage systems. Optimizing their usage requires accurate state-of-health (SoH) estimation, which provides insight into the performance level of the battery and improves the precision of other diagnostic measures, such as state of charge. In this paper, the classical machine learning (ML) strategies of multiple linear and polynomial regression, support vector regression (SVR), and random forest are compared for the task of battery SoH estimation. These ML strategies were selected because they represent a good compromise between light computational effort, applicability, and accuracy of results. The best results were produced using SVR, followed closely by multiple linear regression. This paper also discusses the feature selection process based on the partial charging time between different voltage intervals and shows the linear dependence of these features with capacity reduction. The feature selection, parameter tuning, and performance evaluation of all models were completed using a dataset from the Prognostics Center of Excellence at NASA, considering three batteries in the dataset." @default.
- W4378907583 created "2023-06-01" @default.
- W4378907583 creator A5001972308 @default.
- W4378907583 creator A5012850999 @default.
- W4378907583 creator A5051880150 @default.
- W4378907583 creator A5084326215 @default.
- W4378907583 date "2023-05-30" @default.
- W4378907583 modified "2023-10-16" @default.
- W4378907583 title "Comparing Machine Learning Strategies for SoH Estimation of Lithium-Ion Batteries Using a Feature-Based Approach" @default.
- W4378907583 cites W1966039250 @default.
- W4378907583 cites W1979727650 @default.
- W4378907583 cites W2047152377 @default.
- W4378907583 cites W2050843465 @default.
- W4378907583 cites W2071074937 @default.
- W4378907583 cites W2092888248 @default.
- W4378907583 cites W2146560932 @default.
- W4378907583 cites W2336223670 @default.
- W4378907583 cites W2415876465 @default.
- W4378907583 cites W2417460170 @default.
- W4378907583 cites W2524206741 @default.
- W4378907583 cites W2592404563 @default.
- W4378907583 cites W2786791342 @default.
- W4378907583 cites W2790625295 @default.
- W4378907583 cites W2793702125 @default.
- W4378907583 cites W2798938206 @default.
- W4378907583 cites W2895147187 @default.
- W4378907583 cites W2905007160 @default.
- W4378907583 cites W2910388541 @default.
- W4378907583 cites W2910740817 @default.
- W4378907583 cites W2924382816 @default.
- W4378907583 cites W2955134049 @default.
- W4378907583 cites W2963691557 @default.
- W4378907583 cites W2978202285 @default.
- W4378907583 cites W3024286251 @default.
- W4378907583 cites W3089028455 @default.
- W4378907583 cites W3185168005 @default.
- W4378907583 cites W3195029133 @default.
- W4378907583 cites W3196731055 @default.
- W4378907583 cites W4206604195 @default.
- W4378907583 cites W4224246090 @default.
- W4378907583 cites W4283513259 @default.
- W4378907583 cites W4310873169 @default.
- W4378907583 cites W4313889703 @default.
- W4378907583 cites W4317796713 @default.
- W4378907583 cites W4322580873 @default.
- W4378907583 doi "https://doi.org/10.3390/en16114423" @default.
- W4378907583 hasPublicationYear "2023" @default.
- W4378907583 type Work @default.
- W4378907583 citedByCount "0" @default.
- W4378907583 crossrefType "journal-article" @default.
- W4378907583 hasAuthorship W4378907583A5001972308 @default.
- W4378907583 hasAuthorship W4378907583A5012850999 @default.
- W4378907583 hasAuthorship W4378907583A5051880150 @default.
- W4378907583 hasAuthorship W4378907583A5084326215 @default.
- W4378907583 hasBestOaLocation W43789075831 @default.
- W4378907583 hasConcept C111919701 @default.
- W4378907583 hasConcept C119857082 @default.
- W4378907583 hasConcept C121332964 @default.
- W4378907583 hasConcept C12267149 @default.
- W4378907583 hasConcept C124101348 @default.
- W4378907583 hasConcept C129364497 @default.
- W4378907583 hasConcept C136764020 @default.
- W4378907583 hasConcept C148483581 @default.
- W4378907583 hasConcept C154945302 @default.
- W4378907583 hasConcept C163258240 @default.
- W4378907583 hasConcept C169258074 @default.
- W4378907583 hasConcept C2777294910 @default.
- W4378907583 hasConcept C37616216 @default.
- W4378907583 hasConcept C41008148 @default.
- W4378907583 hasConcept C48921125 @default.
- W4378907583 hasConcept C555008776 @default.
- W4378907583 hasConcept C62520636 @default.
- W4378907583 hasConcept C98045186 @default.
- W4378907583 hasConceptScore W4378907583C111919701 @default.
- W4378907583 hasConceptScore W4378907583C119857082 @default.
- W4378907583 hasConceptScore W4378907583C121332964 @default.
- W4378907583 hasConceptScore W4378907583C12267149 @default.
- W4378907583 hasConceptScore W4378907583C124101348 @default.
- W4378907583 hasConceptScore W4378907583C129364497 @default.
- W4378907583 hasConceptScore W4378907583C136764020 @default.
- W4378907583 hasConceptScore W4378907583C148483581 @default.
- W4378907583 hasConceptScore W4378907583C154945302 @default.
- W4378907583 hasConceptScore W4378907583C163258240 @default.
- W4378907583 hasConceptScore W4378907583C169258074 @default.
- W4378907583 hasConceptScore W4378907583C2777294910 @default.
- W4378907583 hasConceptScore W4378907583C37616216 @default.
- W4378907583 hasConceptScore W4378907583C41008148 @default.
- W4378907583 hasConceptScore W4378907583C48921125 @default.
- W4378907583 hasConceptScore W4378907583C555008776 @default.
- W4378907583 hasConceptScore W4378907583C62520636 @default.
- W4378907583 hasConceptScore W4378907583C98045186 @default.
- W4378907583 hasIssue "11" @default.
- W4378907583 hasLocation W43789075831 @default.
- W4378907583 hasOpenAccess W4378907583 @default.
- W4378907583 hasPrimaryLocation W43789075831 @default.
- W4378907583 hasRelatedWork W2985924212 @default.
- W4378907583 hasRelatedWork W3034132578 @default.
- W4378907583 hasRelatedWork W3165907317 @default.