Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378908645> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4378908645 endingPage "5" @default.
- W4378908645 startingPage "1" @default.
- W4378908645 abstract "Accurate mapping of forests is critical for forest management and carbon stocks monitoring. Deep learning is becoming more popular in Earth Observation (EO), however, the availability of reference data limits its potential in wide-area forest mapping. To overcome those limitations, here we introduce contrastive regression into EO based forest mapping and develop a novel semisupervised regression framework for wall-to-wall mapping of continuous forest variables. It combines supervised contrastive regression loss and semi-supervised Cross-Pseudo Regression loss. The framework is demonstrated over a boreal forest site using Copernicus Sentinel-1 and Sentinel-2 imagery for mapping forest tree height. Achieved prediction accuracies are strongly better compared to using vanilla UNet or traditional regression models, with relative RMSE of 15.1% on stand level. We expect that developed framework can be used for modeling other forest variables and EO datasets." @default.
- W4378908645 created "2023-06-01" @default.
- W4378908645 creator A5037773899 @default.
- W4378908645 creator A5061054850 @default.
- W4378908645 creator A5063326661 @default.
- W4378908645 creator A5075299738 @default.
- W4378908645 creator A5078817021 @default.
- W4378908645 date "2023-01-01" @default.
- W4378908645 modified "2023-10-14" @default.
- W4378908645 title "A Novel Semisupervised Contrastive Regression Framework for Forest Inventory Mapping With Multisensor Satellite Data" @default.
- W4378908645 cites W1997732436 @default.
- W4378908645 cites W2911554154 @default.
- W4378908645 cites W2968347155 @default.
- W4378908645 cites W3035524453 @default.
- W4378908645 cites W3099206234 @default.
- W4378908645 cites W3128476715 @default.
- W4378908645 cites W3173833413 @default.
- W4378908645 cites W3204157259 @default.
- W4378908645 cites W4250482878 @default.
- W4378908645 cites W4283697304 @default.
- W4378908645 cites W4285055058 @default.
- W4378908645 cites W4285204591 @default.
- W4378908645 cites W4308207276 @default.
- W4378908645 cites W4312303088 @default.
- W4378908645 doi "https://doi.org/10.1109/lgrs.2023.3281526" @default.
- W4378908645 hasPublicationYear "2023" @default.
- W4378908645 type Work @default.
- W4378908645 citedByCount "0" @default.
- W4378908645 crossrefType "journal-article" @default.
- W4378908645 hasAuthorship W4378908645A5037773899 @default.
- W4378908645 hasAuthorship W4378908645A5061054850 @default.
- W4378908645 hasAuthorship W4378908645A5063326661 @default.
- W4378908645 hasAuthorship W4378908645A5075299738 @default.
- W4378908645 hasAuthorship W4378908645A5078817021 @default.
- W4378908645 hasBestOaLocation W43789086451 @default.
- W4378908645 hasConcept C105795698 @default.
- W4378908645 hasConcept C119857082 @default.
- W4378908645 hasConcept C127413603 @default.
- W4378908645 hasConcept C146978453 @default.
- W4378908645 hasConcept C147103442 @default.
- W4378908645 hasConcept C152877465 @default.
- W4378908645 hasConcept C154945302 @default.
- W4378908645 hasConcept C169258074 @default.
- W4378908645 hasConcept C19269812 @default.
- W4378908645 hasConcept C205649164 @default.
- W4378908645 hasConcept C2778102629 @default.
- W4378908645 hasConcept C28631016 @default.
- W4378908645 hasConcept C33923547 @default.
- W4378908645 hasConcept C39432304 @default.
- W4378908645 hasConcept C41008148 @default.
- W4378908645 hasConcept C54286561 @default.
- W4378908645 hasConcept C62649853 @default.
- W4378908645 hasConcept C83546350 @default.
- W4378908645 hasConcept C87621631 @default.
- W4378908645 hasConcept C97137747 @default.
- W4378908645 hasConceptScore W4378908645C105795698 @default.
- W4378908645 hasConceptScore W4378908645C119857082 @default.
- W4378908645 hasConceptScore W4378908645C127413603 @default.
- W4378908645 hasConceptScore W4378908645C146978453 @default.
- W4378908645 hasConceptScore W4378908645C147103442 @default.
- W4378908645 hasConceptScore W4378908645C152877465 @default.
- W4378908645 hasConceptScore W4378908645C154945302 @default.
- W4378908645 hasConceptScore W4378908645C169258074 @default.
- W4378908645 hasConceptScore W4378908645C19269812 @default.
- W4378908645 hasConceptScore W4378908645C205649164 @default.
- W4378908645 hasConceptScore W4378908645C2778102629 @default.
- W4378908645 hasConceptScore W4378908645C28631016 @default.
- W4378908645 hasConceptScore W4378908645C33923547 @default.
- W4378908645 hasConceptScore W4378908645C39432304 @default.
- W4378908645 hasConceptScore W4378908645C41008148 @default.
- W4378908645 hasConceptScore W4378908645C54286561 @default.
- W4378908645 hasConceptScore W4378908645C62649853 @default.
- W4378908645 hasConceptScore W4378908645C83546350 @default.
- W4378908645 hasConceptScore W4378908645C87621631 @default.
- W4378908645 hasConceptScore W4378908645C97137747 @default.
- W4378908645 hasFunder F4320321001 @default.
- W4378908645 hasFunder F4320328501 @default.
- W4378908645 hasLocation W43789086451 @default.
- W4378908645 hasLocation W43789086452 @default.
- W4378908645 hasOpenAccess W4378908645 @default.
- W4378908645 hasPrimaryLocation W43789086451 @default.
- W4378908645 hasRelatedWork W1966406940 @default.
- W4378908645 hasRelatedWork W2034813116 @default.
- W4378908645 hasRelatedWork W2054087368 @default.
- W4378908645 hasRelatedWork W2057962381 @default.
- W4378908645 hasRelatedWork W2111661234 @default.
- W4378908645 hasRelatedWork W2315013538 @default.
- W4378908645 hasRelatedWork W4281563349 @default.
- W4378908645 hasRelatedWork W4289884158 @default.
- W4378908645 hasRelatedWork W4310629301 @default.
- W4378908645 hasRelatedWork W4378908645 @default.
- W4378908645 hasVolume "20" @default.
- W4378908645 isParatext "false" @default.
- W4378908645 isRetracted "false" @default.
- W4378908645 workType "article" @default.