Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378953075> ?p ?o ?g. }
- W4378953075 endingPage "1564" @default.
- W4378953075 startingPage "1553" @default.
- W4378953075 abstract "ConspectusGold nanoparticles (AuNPs) exhibit unique size- and shape-dependent properties not obtainable at the macroscale. Gold nanorods (AuNRs), with their morphology-dependent optical properties, ability to convert light to heat, and high surface-to-volume ratios, are of great interest for biosensing, medicine, and catalysis. While the gold core provides many fascinating properties, this Account focuses on AuNP soft surface coatings, which govern the interactions of nanoparticles with the local environments. Postmodification of AuNP surface chemistry can greatly alter NP colloidal stability, nano-bio interactions, and functionality. Polyelectrolyte coatings provide controllable surface-coating thickness and charge, which impact the composition of the acquired corona in biological settings. Covalent modification, in which covalently bound ligands replace the original capping layer, is often performed with thiols and disulfides due to their ability to replace native coatings. N-heterocyclic carbenes and looped peptides expand the possible functionalities of the ligand layer.The characterization of surface ligands bound to AuNPs, in terms of ligand density and dynamics, remains a challenge. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding molecular structures and dynamics. Our recent NMR work on AuNPs demonstrated that NMR data were obtainable for ligands on NPs with diameters up to 25 nm for the first time. This was facilitated by the strong proton NMR signals of the trimethylammonium headgroup, which are present in a distinct regime from other ligand protons' signals. Ligand density analyses showed that the smallest AuNPs (below 4 nm) had the largest ligand densities, yet spin-spin T2 measurements revealed that these smallest NPs also had the most mobile ligand headgroups. Molecular dynamics simulations were able to reconcile these seemingly contradictory results.While NMR spectroscopy provides ligand information averaged over many NPs, the ligand distribution on individual particles' surfaces must also be probed to fully understand the surface coating. Taking advantage of improvements in electron energy loss spectroscopy (EELS) detectors employed with scanning transmission electron microscopy (STEM), a single-layer graphene substrate was used to calibrate the carbon K-edge EELS signal, allowing quantitative imaging of the carbon atom densities on AuNRs with sub-nanometer spatial resolution. In collaboration with others, we revealed that the mean value for surfactant-bilayer-coated AuNRs had 10-30% reduced ligand density at the ends of the rods compared to the sides, confirming prior indirect evidence for spatially distinct ligand densities.Recent work has found that surface ligands on nanoparticles can, somewhat surprisingly, enhance the selectivity and efficiency of the electrocatalytic reduction of CO2 by controlling access to the active site, tuning its electronic and chemical environment, or denying entry to impurities that poison the nanoparticle surface to facilitate reduction. Looking to the future, while NMR and EELS are powerful and complementary techniques for investigating surface coatings on AuNPs, the frontier of this field includes the development of methods to probe the surface ligands of individual NPs in a high-throughput manner, to monitor nano-bio interactions within complex matrices, and to study structure-property relationships of AuNPs in biological systems." @default.
- W4378953075 created "2023-06-02" @default.
- W4378953075 creator A5008536850 @default.
- W4378953075 creator A5030076676 @default.
- W4378953075 creator A5039087961 @default.
- W4378953075 creator A5054661568 @default.
- W4378953075 creator A5058393781 @default.
- W4378953075 creator A5073977782 @default.
- W4378953075 creator A5090386628 @default.
- W4378953075 date "2023-06-01" @default.
- W4378953075 modified "2023-10-01" @default.
- W4378953075 title "The Landscape of Gold Nanocrystal Surface Chemistry" @default.
- W4378953075 cites W1181502297 @default.
- W4378953075 cites W1967598238 @default.
- W4378953075 cites W1969471545 @default.
- W4378953075 cites W1971510744 @default.
- W4378953075 cites W1979884986 @default.
- W4378953075 cites W1983318157 @default.
- W4378953075 cites W1988902294 @default.
- W4378953075 cites W2001503622 @default.
- W4378953075 cites W2003555872 @default.
- W4378953075 cites W2008073195 @default.
- W4378953075 cites W2011564123 @default.
- W4378953075 cites W2013930572 @default.
- W4378953075 cites W2022190942 @default.
- W4378953075 cites W2022849239 @default.
- W4378953075 cites W2024598687 @default.
- W4378953075 cites W2025295644 @default.
- W4378953075 cites W2030634530 @default.
- W4378953075 cites W2031654107 @default.
- W4378953075 cites W2036285102 @default.
- W4378953075 cites W2040958578 @default.
- W4378953075 cites W2055721190 @default.
- W4378953075 cites W2056618936 @default.
- W4378953075 cites W2064848737 @default.
- W4378953075 cites W2066748728 @default.
- W4378953075 cites W2073985842 @default.
- W4378953075 cites W2093279818 @default.
- W4378953075 cites W2115029038 @default.
- W4378953075 cites W2119648600 @default.
- W4378953075 cites W2132651708 @default.
- W4378953075 cites W2144723048 @default.
- W4378953075 cites W2153428397 @default.
- W4378953075 cites W2160045751 @default.
- W4378953075 cites W2300904217 @default.
- W4378953075 cites W2307498337 @default.
- W4378953075 cites W2314508046 @default.
- W4378953075 cites W2318118246 @default.
- W4378953075 cites W2322811648 @default.
- W4378953075 cites W2326928258 @default.
- W4378953075 cites W2335536192 @default.
- W4378953075 cites W2477517249 @default.
- W4378953075 cites W2509097184 @default.
- W4378953075 cites W2514267515 @default.
- W4378953075 cites W2553484210 @default.
- W4378953075 cites W2735463938 @default.
- W4378953075 cites W2772713983 @default.
- W4378953075 cites W2778816053 @default.
- W4378953075 cites W2784574862 @default.
- W4378953075 cites W2891730151 @default.
- W4378953075 cites W2900011267 @default.
- W4378953075 cites W2912527308 @default.
- W4378953075 cites W2913203660 @default.
- W4378953075 cites W2932073682 @default.
- W4378953075 cites W2946437385 @default.
- W4378953075 cites W2966820029 @default.
- W4378953075 cites W2969829076 @default.
- W4378953075 cites W2971326475 @default.
- W4378953075 cites W3030223725 @default.
- W4378953075 cites W3088594414 @default.
- W4378953075 cites W3096455530 @default.
- W4378953075 cites W3107694139 @default.
- W4378953075 cites W3140052732 @default.
- W4378953075 cites W3155262104 @default.
- W4378953075 cites W3185879089 @default.
- W4378953075 cites W3213095493 @default.
- W4378953075 cites W4200281805 @default.
- W4378953075 cites W4205544573 @default.
- W4378953075 cites W4210450868 @default.
- W4378953075 cites W4210864570 @default.
- W4378953075 cites W4211154695 @default.
- W4378953075 cites W4220980149 @default.
- W4378953075 cites W4220983241 @default.
- W4378953075 cites W4221119884 @default.
- W4378953075 cites W4221138085 @default.
- W4378953075 cites W4286488836 @default.
- W4378953075 cites W4288051379 @default.
- W4378953075 cites W4290805067 @default.
- W4378953075 cites W4297384864 @default.
- W4378953075 cites W4306786682 @default.
- W4378953075 doi "https://doi.org/10.1021/acs.accounts.3c00109" @default.
- W4378953075 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37260281" @default.
- W4378953075 hasPublicationYear "2023" @default.
- W4378953075 type Work @default.
- W4378953075 citedByCount "0" @default.
- W4378953075 crossrefType "journal-article" @default.
- W4378953075 hasAuthorship W4378953075A5008536850 @default.
- W4378953075 hasAuthorship W4378953075A5030076676 @default.