Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378974400> ?p ?o ?g. }
- W4378974400 endingPage "354" @default.
- W4378974400 startingPage "341" @default.
- W4378974400 abstract "Background & AimsThe liver ensures organismal homeostasis through modulation of physiological functions over the course of the day. How liver diseases such as nonalcoholic steatohepatitis (NASH) affect daily transcriptome rhythms in the liver remains elusive.MethodsTo start closing this gap, we evaluated the impact of NASH on the diurnal regulation of the liver transcriptome in mice. In addition, we investigated how stringent consideration of circadian rhythmicity affects the outcomes of NASH transcriptome analyses.ResultsComparative rhythm analysis of the liver transcriptome from diet-induced NASH and control mice showed an almost 3-hour phase advance in global gene expression rhythms. Rhythmically expressed genes associated with DNA repair and cell-cycle regulation showed increased overall expression and circadian amplitude. In contrast, lipid and glucose metabolism–associated genes showed loss of circadian amplitude, reduced overall expression, and phase advances in NASH livers. Comparison of NASH-induced liver transcriptome responses between published studies showed little overlap (12%) in differentially expressed genes (DEGs). However, by controlling for sampling time and using circadian analytical tools, a 7-fold increase in DEG detection was achieved compared with methods without time control.ConclusionsNASH had a strong effect on circadian liver transcriptome rhythms with phase- and amplitude-specific effects for key metabolic and cell repair pathways, respectively. Accounting for circadian rhythms in NASH transcriptome studies markedly improves DEG detection and enhances reproducibility. The liver ensures organismal homeostasis through modulation of physiological functions over the course of the day. How liver diseases such as nonalcoholic steatohepatitis (NASH) affect daily transcriptome rhythms in the liver remains elusive. To start closing this gap, we evaluated the impact of NASH on the diurnal regulation of the liver transcriptome in mice. In addition, we investigated how stringent consideration of circadian rhythmicity affects the outcomes of NASH transcriptome analyses. Comparative rhythm analysis of the liver transcriptome from diet-induced NASH and control mice showed an almost 3-hour phase advance in global gene expression rhythms. Rhythmically expressed genes associated with DNA repair and cell-cycle regulation showed increased overall expression and circadian amplitude. In contrast, lipid and glucose metabolism–associated genes showed loss of circadian amplitude, reduced overall expression, and phase advances in NASH livers. Comparison of NASH-induced liver transcriptome responses between published studies showed little overlap (12%) in differentially expressed genes (DEGs). However, by controlling for sampling time and using circadian analytical tools, a 7-fold increase in DEG detection was achieved compared with methods without time control. NASH had a strong effect on circadian liver transcriptome rhythms with phase- and amplitude-specific effects for key metabolic and cell repair pathways, respectively. Accounting for circadian rhythms in NASH transcriptome studies markedly improves DEG detection and enhances reproducibility." @default.
- W4378974400 created "2023-06-02" @default.
- W4378974400 creator A5040444798 @default.
- W4378974400 creator A5048566015 @default.
- W4378974400 creator A5062529299 @default.
- W4378974400 date "2023-01-01" @default.
- W4378974400 modified "2023-10-14" @default.
- W4378974400 title "Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice" @default.
- W4378974400 cites W1587250362 @default.
- W4378974400 cites W1882608036 @default.
- W4378974400 cites W1963858378 @default.
- W4378974400 cites W1969353942 @default.
- W4378974400 cites W1989908272 @default.
- W4378974400 cites W1997151200 @default.
- W4378974400 cites W2022273281 @default.
- W4378974400 cites W2044458189 @default.
- W4378974400 cites W2045333877 @default.
- W4378974400 cites W2051145352 @default.
- W4378974400 cites W2056395995 @default.
- W4378974400 cites W2104415219 @default.
- W4378974400 cites W2111330221 @default.
- W4378974400 cites W2121075147 @default.
- W4378974400 cites W2133918896 @default.
- W4378974400 cites W2145523773 @default.
- W4378974400 cites W2158217645 @default.
- W4378974400 cites W2160091872 @default.
- W4378974400 cites W2179438025 @default.
- W4378974400 cites W2340356302 @default.
- W4378974400 cites W2463616135 @default.
- W4378974400 cites W2556811098 @default.
- W4378974400 cites W2787429377 @default.
- W4378974400 cites W2804401159 @default.
- W4378974400 cites W2810423511 @default.
- W4378974400 cites W2900310474 @default.
- W4378974400 cites W2904144930 @default.
- W4378974400 cites W2905294359 @default.
- W4378974400 cites W2911080438 @default.
- W4378974400 cites W2968815222 @default.
- W4378974400 cites W2979371456 @default.
- W4378974400 cites W2979681334 @default.
- W4378974400 cites W2996013185 @default.
- W4378974400 cites W3002152478 @default.
- W4378974400 cites W3004644667 @default.
- W4378974400 cites W3037996985 @default.
- W4378974400 cites W3045788049 @default.
- W4378974400 cites W3104053913 @default.
- W4378974400 cites W3119150497 @default.
- W4378974400 cites W3120402636 @default.
- W4378974400 cites W3125313120 @default.
- W4378974400 cites W3134768100 @default.
- W4378974400 cites W3159854931 @default.
- W4378974400 cites W3162751798 @default.
- W4378974400 cites W3201074151 @default.
- W4378974400 cites W4206484980 @default.
- W4378974400 cites W4220825346 @default.
- W4378974400 cites W4220869006 @default.
- W4378974400 cites W4280573294 @default.
- W4378974400 cites W4282975706 @default.
- W4378974400 cites W4283804489 @default.
- W4378974400 cites W4288050764 @default.
- W4378974400 cites W4289637900 @default.
- W4378974400 cites W4313544824 @default.
- W4378974400 doi "https://doi.org/10.1016/j.jcmgh.2023.05.008" @default.
- W4378974400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37270062" @default.
- W4378974400 hasPublicationYear "2023" @default.
- W4378974400 type Work @default.
- W4378974400 citedByCount "2" @default.
- W4378974400 countsByYear W43789744002023 @default.
- W4378974400 crossrefType "journal-article" @default.
- W4378974400 hasAuthorship W4378974400A5040444798 @default.
- W4378974400 hasAuthorship W4378974400A5048566015 @default.
- W4378974400 hasAuthorship W4378974400A5062529299 @default.
- W4378974400 hasBestOaLocation W43789744001 @default.
- W4378974400 hasConcept C104317684 @default.
- W4378974400 hasConcept C121446783 @default.
- W4378974400 hasConcept C126322002 @default.
- W4378974400 hasConcept C134018914 @default.
- W4378974400 hasConcept C150194340 @default.
- W4378974400 hasConcept C162317418 @default.
- W4378974400 hasConcept C54355233 @default.
- W4378974400 hasConcept C71924100 @default.
- W4378974400 hasConcept C86803240 @default.
- W4378974400 hasConceptScore W4378974400C104317684 @default.
- W4378974400 hasConceptScore W4378974400C121446783 @default.
- W4378974400 hasConceptScore W4378974400C126322002 @default.
- W4378974400 hasConceptScore W4378974400C134018914 @default.
- W4378974400 hasConceptScore W4378974400C150194340 @default.
- W4378974400 hasConceptScore W4378974400C162317418 @default.
- W4378974400 hasConceptScore W4378974400C54355233 @default.
- W4378974400 hasConceptScore W4378974400C71924100 @default.
- W4378974400 hasConceptScore W4378974400C86803240 @default.
- W4378974400 hasFunder F4320320879 @default.
- W4378974400 hasIssue "3" @default.
- W4378974400 hasLocation W43789744001 @default.
- W4378974400 hasLocation W43789744002 @default.
- W4378974400 hasLocation W43789744003 @default.
- W4378974400 hasLocation W43789744004 @default.
- W4378974400 hasOpenAccess W4378974400 @default.