Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378975271> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4378975271 endingPage "868" @default.
- W4378975271 startingPage "857" @default.
- W4378975271 abstract "School buildings in Taiwan are designed not only as places of education, but also as temporary shelters in the aftermath of major earthquakes. Therefore, seismic resistance assessments of existing school buildings are very important. Another issue worth discussing is how to choose the appropriate number of school case studies and seismic factors when using artificial intelligence (AI) to infer the seismic resistance of school buildings. This is because when the number is too high, a large amount of time and money will be required to build the seismic database. If the number is too low, then the inference results will be unsatisfactory. This study applied different research methods to address these issues. First, sensitivity analysis was conducted to determine the optimal number of seismic factors and school case studies. Then, gray theory was utilized to explore the correlations between the seismic factors and seismic resistance of school buildings. Finally, a support vector machine (SVM) and gene expression programming (GEP) were used to determine the optimal assessment models. The SVM was also validated by 10-fold cross-validation and back-propagation network. The results show that when researchers used AI theories, at least five factors were considered. If researchers want to obtain a better inference result, then the number of factors can exceed 10. With regard to the number of cases, it should be twice the number of factors, but more than three times is ideal. For the seismic assessment models inferred by SVM and GEP, the root mean square error of the testing cases ranged from 0.0501 to 0.0541, and 0.0757 to 0.0981, respectively, which indicates good performance. The results can be adopted by structural engineers and architects. The research methods developed in this study can also be referenced by researchers in the future." @default.
- W4378975271 created "2023-06-02" @default.
- W4378975271 creator A5000925941 @default.
- W4378975271 date "2023-08-01" @default.
- W4378975271 modified "2023-09-30" @default.
- W4378975271 title "Optimization of the seismic resistance of school buildings using artificial intelligence and sensitivity analysis theories – A Taiwan case study" @default.
- W4378975271 cites W1995408081 @default.
- W4378975271 cites W1999978517 @default.
- W4378975271 cites W2013377700 @default.
- W4378975271 cites W2042774989 @default.
- W4378975271 cites W2055365316 @default.
- W4378975271 cites W2062812789 @default.
- W4378975271 cites W2079714838 @default.
- W4378975271 cites W2088180331 @default.
- W4378975271 cites W2156395076 @default.
- W4378975271 cites W2161477551 @default.
- W4378975271 cites W2197660156 @default.
- W4378975271 cites W2341185148 @default.
- W4378975271 cites W2429744373 @default.
- W4378975271 cites W2588598411 @default.
- W4378975271 cites W2790002071 @default.
- W4378975271 cites W2792789459 @default.
- W4378975271 cites W2800639406 @default.
- W4378975271 cites W2893133160 @default.
- W4378975271 cites W2903334479 @default.
- W4378975271 cites W2907527740 @default.
- W4378975271 cites W2937959455 @default.
- W4378975271 cites W3010887015 @default.
- W4378975271 cites W3017200266 @default.
- W4378975271 cites W3032868068 @default.
- W4378975271 cites W3034004576 @default.
- W4378975271 cites W3034686856 @default.
- W4378975271 cites W3035032523 @default.
- W4378975271 cites W3035177744 @default.
- W4378975271 cites W3047900803 @default.
- W4378975271 cites W3087655783 @default.
- W4378975271 cites W3135734062 @default.
- W4378975271 cites W3184642102 @default.
- W4378975271 cites W3199513907 @default.
- W4378975271 cites W3212484614 @default.
- W4378975271 cites W4213248101 @default.
- W4378975271 cites W4229452951 @default.
- W4378975271 cites W4281670799 @default.
- W4378975271 cites W4295203047 @default.
- W4378975271 cites W778939346 @default.
- W4378975271 doi "https://doi.org/10.1016/j.istruc.2023.05.057" @default.
- W4378975271 hasPublicationYear "2023" @default.
- W4378975271 type Work @default.
- W4378975271 citedByCount "0" @default.
- W4378975271 crossrefType "journal-article" @default.
- W4378975271 hasAuthorship W4378975271A5000925941 @default.
- W4378975271 hasConcept C119857082 @default.
- W4378975271 hasConcept C12267149 @default.
- W4378975271 hasConcept C124101348 @default.
- W4378975271 hasConcept C127413603 @default.
- W4378975271 hasConcept C147176958 @default.
- W4378975271 hasConcept C154945302 @default.
- W4378975271 hasConcept C18903297 @default.
- W4378975271 hasConcept C21200559 @default.
- W4378975271 hasConcept C24326235 @default.
- W4378975271 hasConcept C2776214188 @default.
- W4378975271 hasConcept C41008148 @default.
- W4378975271 hasConcept C57473165 @default.
- W4378975271 hasConcept C6980683 @default.
- W4378975271 hasConcept C86803240 @default.
- W4378975271 hasConceptScore W4378975271C119857082 @default.
- W4378975271 hasConceptScore W4378975271C12267149 @default.
- W4378975271 hasConceptScore W4378975271C124101348 @default.
- W4378975271 hasConceptScore W4378975271C127413603 @default.
- W4378975271 hasConceptScore W4378975271C147176958 @default.
- W4378975271 hasConceptScore W4378975271C154945302 @default.
- W4378975271 hasConceptScore W4378975271C18903297 @default.
- W4378975271 hasConceptScore W4378975271C21200559 @default.
- W4378975271 hasConceptScore W4378975271C24326235 @default.
- W4378975271 hasConceptScore W4378975271C2776214188 @default.
- W4378975271 hasConceptScore W4378975271C41008148 @default.
- W4378975271 hasConceptScore W4378975271C57473165 @default.
- W4378975271 hasConceptScore W4378975271C6980683 @default.
- W4378975271 hasConceptScore W4378975271C86803240 @default.
- W4378975271 hasLocation W43789752711 @default.
- W4378975271 hasOpenAccess W4378975271 @default.
- W4378975271 hasPrimaryLocation W43789752711 @default.
- W4378975271 hasRelatedWork W1982952098 @default.
- W4378975271 hasRelatedWork W1996541855 @default.
- W4378975271 hasRelatedWork W2355927362 @default.
- W4378975271 hasRelatedWork W2899084033 @default.
- W4378975271 hasRelatedWork W2961085424 @default.
- W4378975271 hasRelatedWork W3098374988 @default.
- W4378975271 hasRelatedWork W3195168932 @default.
- W4378975271 hasRelatedWork W4286629047 @default.
- W4378975271 hasRelatedWork W4306674287 @default.
- W4378975271 hasRelatedWork W4224009465 @default.
- W4378975271 hasVolume "54" @default.
- W4378975271 isParatext "false" @default.
- W4378975271 isRetracted "false" @default.
- W4378975271 workType "article" @default.