Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378976752> ?p ?o ?g. }
- W4378976752 abstract "Alzheimer’s Disease (AD), the most prevalent type of dementia, is an incurable neurological disorder that leads to progressive mental decline. The majority of an AD diagnosis in practise is based on the patient’s clinical history and neu- ropsychological information, such as magnetic resource imaging, despite the fact that an exact diagnosis of AD is challenging (MRI). Deep learning’s use in recognising AD is the subject of growing research in recent few years. It enables for automatic AD identification using 3D brain MRI images. For AD recognition, the network makes use of a three-dimensional convolutional neural network (3DCNN). It is distinctive in that AD recognition accurately reflects the three-dimensional structure of the brain as a whole. Due to the fact that MRIs are 3D objects and utilise 3D Convolutional Neural Networks (CNNs) since using 3D CNNs the spatial integrity is maintained as compared to other methods that only employ a section of the MRI, such as ROI-based CNNs which works on some specific ROI, 2D slices that uses 2D slices, and 3D Patch-level that use 3D pathes. Four successive processing layers, two fully connected layers, and a classification layer is employed to design the CNN in this study. Each of the three groups in the structure is composed of three layers: a convolutional layer, a pooling layer, and a normalisation layer. The AD Neuroimaging Initiative’s MRI data is used to train and evaluate the algorithm. The data used in this work is comprised of 1656 MRI scans of 382 patients. According to the results of the trial, the suggested algorithm had a 99% training accuracy of AD recognition with a validation accuracy of 73%." @default.
- W4378976752 created "2023-06-02" @default.
- W4378976752 creator A5011333293 @default.
- W4378976752 creator A5022816552 @default.
- W4378976752 creator A5053870262 @default.
- W4378976752 creator A5090039499 @default.
- W4378976752 date "2023-03-18" @default.
- W4378976752 modified "2023-10-17" @default.
- W4378976752 title "Deep 3D-CNN using Resonance Imaging for Diagnosing Alzheimer’s" @default.
- W4378976752 cites W1531333757 @default.
- W4378976752 cites W1992054897 @default.
- W4378976752 cites W2000292092 @default.
- W4378976752 cites W2017237939 @default.
- W4378976752 cites W2039018899 @default.
- W4378976752 cites W2078524519 @default.
- W4378976752 cites W2083424533 @default.
- W4378976752 cites W2114379455 @default.
- W4378976752 cites W2126598020 @default.
- W4378976752 cites W2146089088 @default.
- W4378976752 cites W2175191116 @default.
- W4378976752 cites W2396022766 @default.
- W4378976752 cites W2474271774 @default.
- W4378976752 cites W2527896982 @default.
- W4378976752 cites W2626261799 @default.
- W4378976752 cites W2780705833 @default.
- W4378976752 cites W2790040701 @default.
- W4378976752 cites W2791282053 @default.
- W4378976752 cites W2793668604 @default.
- W4378976752 cites W2804733524 @default.
- W4378976752 cites W2889669663 @default.
- W4378976752 cites W2899335103 @default.
- W4378976752 cites W2905035821 @default.
- W4378976752 cites W2906155095 @default.
- W4378976752 cites W2919115771 @default.
- W4378976752 cites W2964171289 @default.
- W4378976752 cites W2997873617 @default.
- W4378976752 cites W3011637637 @default.
- W4378976752 cites W3022315685 @default.
- W4378976752 cites W3025729836 @default.
- W4378976752 cites W3033099853 @default.
- W4378976752 cites W3035309915 @default.
- W4378976752 cites W3037286432 @default.
- W4378976752 cites W3082072206 @default.
- W4378976752 cites W3156391873 @default.
- W4378976752 cites W3195726886 @default.
- W4378976752 cites W4211050998 @default.
- W4378976752 cites W66427752 @default.
- W4378976752 doi "https://doi.org/10.1109/aisp57993.2023.10135044" @default.
- W4378976752 hasPublicationYear "2023" @default.
- W4378976752 type Work @default.
- W4378976752 citedByCount "0" @default.
- W4378976752 crossrefType "proceedings-article" @default.
- W4378976752 hasAuthorship W4378976752A5011333293 @default.
- W4378976752 hasAuthorship W4378976752A5022816552 @default.
- W4378976752 hasAuthorship W4378976752A5053870262 @default.
- W4378976752 hasAuthorship W4378976752A5090039499 @default.
- W4378976752 hasConcept C108583219 @default.
- W4378976752 hasConcept C126838900 @default.
- W4378976752 hasConcept C142724271 @default.
- W4378976752 hasConcept C143409427 @default.
- W4378976752 hasConcept C153180895 @default.
- W4378976752 hasConcept C154945302 @default.
- W4378976752 hasConcept C15744967 @default.
- W4378976752 hasConcept C169760540 @default.
- W4378976752 hasConcept C2779134260 @default.
- W4378976752 hasConcept C2779483572 @default.
- W4378976752 hasConcept C31972630 @default.
- W4378976752 hasConcept C41008148 @default.
- W4378976752 hasConcept C58693492 @default.
- W4378976752 hasConcept C70437156 @default.
- W4378976752 hasConcept C71924100 @default.
- W4378976752 hasConcept C81363708 @default.
- W4378976752 hasConceptScore W4378976752C108583219 @default.
- W4378976752 hasConceptScore W4378976752C126838900 @default.
- W4378976752 hasConceptScore W4378976752C142724271 @default.
- W4378976752 hasConceptScore W4378976752C143409427 @default.
- W4378976752 hasConceptScore W4378976752C153180895 @default.
- W4378976752 hasConceptScore W4378976752C154945302 @default.
- W4378976752 hasConceptScore W4378976752C15744967 @default.
- W4378976752 hasConceptScore W4378976752C169760540 @default.
- W4378976752 hasConceptScore W4378976752C2779134260 @default.
- W4378976752 hasConceptScore W4378976752C2779483572 @default.
- W4378976752 hasConceptScore W4378976752C31972630 @default.
- W4378976752 hasConceptScore W4378976752C41008148 @default.
- W4378976752 hasConceptScore W4378976752C58693492 @default.
- W4378976752 hasConceptScore W4378976752C70437156 @default.
- W4378976752 hasConceptScore W4378976752C71924100 @default.
- W4378976752 hasConceptScore W4378976752C81363708 @default.
- W4378976752 hasLocation W43789767521 @default.
- W4378976752 hasOpenAccess W4378976752 @default.
- W4378976752 hasPrimaryLocation W43789767521 @default.
- W4378976752 hasRelatedWork W2517027266 @default.
- W4378976752 hasRelatedWork W2732542196 @default.
- W4378976752 hasRelatedWork W2738221750 @default.
- W4378976752 hasRelatedWork W2758063741 @default.
- W4378976752 hasRelatedWork W2940661641 @default.
- W4378976752 hasRelatedWork W3093238181 @default.
- W4378976752 hasRelatedWork W3156786002 @default.
- W4378976752 hasRelatedWork W4308191152 @default.
- W4378976752 hasRelatedWork W4321369474 @default.