Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378976849> ?p ?o ?g. }
- W4378976849 abstract "In recent years, deep model's feature learning skills have become more compelling, resulting in huge advancements in various artificial intelligence (AI) applications. Specifically, depth and breadth of Computer Vision (CV) have expanded rapidly considering the usage of Deep Neural Networks (DNNs). However, it has been shown in the literature that DNNs are vulnerable to adversarial attacks caused by carefully crafted perturbations through solving complex optimization problems. Although the attacks reveal weaknesses in sophisticated DNN algorithms, they might be seen as an opportunity to address issues in real-world security-critical applications. These attacks represent a paradigm change for circumstances in which vulnerable assets must be concealed from autonomous detection systems onboard drones, Unmanned Aerial Vehicles (UAVs), and satellites. Flying AI-models with strong remote detection and classification capabilities may relay exact target-object kinds on the ground, compromising victim security. The employment of conventional tactics to hide huge stationary and movable assets from autonomous aerial detection has become ineffective for larger areas owing to its cost and applicability. Previous works have explained the broader perspective of adversarial attacks in both digital and physical domains. This is the first effort to characterize the multiplicity of adversarial attacks from the viewpoint of autonomous aerial imaging. In addition to providing a thorough literature review of adversarial attacks on aerial imagery in CV tasks, this paper also offers non-specialists succinct descriptions of technical terms and prospects associated with this direction of study." @default.
- W4378976849 created "2023-06-02" @default.
- W4378976849 creator A5001469232 @default.
- W4378976849 creator A5003668441 @default.
- W4378976849 creator A5044794348 @default.
- W4378976849 creator A5079485458 @default.
- W4378976849 creator A5081734527 @default.
- W4378976849 date "2023-02-22" @default.
- W4378976849 modified "2023-10-18" @default.
- W4378976849 title "Adversarial Attacks on Aerial Imagery : The State-of-the-Art and Perspective" @default.
- W4378976849 cites W1993882792 @default.
- W4378976849 cites W2535873859 @default.
- W4378976849 cites W2608596745 @default.
- W4378976849 cites W2618530766 @default.
- W4378976849 cites W2774644650 @default.
- W4378976849 cites W2798302089 @default.
- W4378976849 cites W2891201238 @default.
- W4378976849 cites W2905423756 @default.
- W4378976849 cites W2913541340 @default.
- W4378976849 cites W2951390634 @default.
- W4378976849 cites W2962700793 @default.
- W4378976849 cites W2963229629 @default.
- W4378976849 cites W2963542245 @default.
- W4378976849 cites W2963857521 @default.
- W4378976849 cites W2964082701 @default.
- W4378976849 cites W2968261142 @default.
- W4378976849 cites W2969664989 @default.
- W4378976849 cites W2972986629 @default.
- W4378976849 cites W2998904801 @default.
- W4378976849 cites W3017485054 @default.
- W4378976849 cites W3025279871 @default.
- W4378976849 cites W3034920607 @default.
- W4378976849 cites W3035447895 @default.
- W4378976849 cites W3035524670 @default.
- W4378976849 cites W3048431450 @default.
- W4378976849 cites W3048636285 @default.
- W4378976849 cites W3086814572 @default.
- W4378976849 cites W3088678766 @default.
- W4378976849 cites W3094984771 @default.
- W4378976849 cites W3097573595 @default.
- W4378976849 cites W3101267861 @default.
- W4378976849 cites W3105806188 @default.
- W4378976849 cites W3107990944 @default.
- W4378976849 cites W3110908156 @default.
- W4378976849 cites W3128592650 @default.
- W4378976849 cites W3132583427 @default.
- W4378976849 cites W3132896347 @default.
- W4378976849 cites W3134976640 @default.
- W4378976849 cites W3152760948 @default.
- W4378976849 cites W3163293237 @default.
- W4378976849 cites W3176237058 @default.
- W4378976849 cites W3176477939 @default.
- W4378976849 cites W3185095134 @default.
- W4378976849 cites W3194110702 @default.
- W4378976849 cites W3196107314 @default.
- W4378976849 cites W3200450146 @default.
- W4378976849 cites W3202707779 @default.
- W4378976849 cites W3204155906 @default.
- W4378976849 cites W3205672068 @default.
- W4378976849 cites W3206814941 @default.
- W4378976849 cites W3211999566 @default.
- W4378976849 cites W4200410883 @default.
- W4378976849 cites W4210320493 @default.
- W4378976849 cites W4210668396 @default.
- W4378976849 cites W4214833808 @default.
- W4378976849 cites W4221027618 @default.
- W4378976849 cites W4221139075 @default.
- W4378976849 cites W4225786036 @default.
- W4378976849 cites W4280620144 @default.
- W4378976849 cites W4288083805 @default.
- W4378976849 cites W4304091855 @default.
- W4378976849 cites W4307371716 @default.
- W4378976849 cites W4308643665 @default.
- W4378976849 cites W4312611884 @default.
- W4378976849 cites W4313180120 @default.
- W4378976849 doi "https://doi.org/10.1109/icai58407.2023.10136660" @default.
- W4378976849 hasPublicationYear "2023" @default.
- W4378976849 type Work @default.
- W4378976849 citedByCount "1" @default.
- W4378976849 countsByYear W43789768492023 @default.
- W4378976849 crossrefType "proceedings-article" @default.
- W4378976849 hasAuthorship W4378976849A5001469232 @default.
- W4378976849 hasAuthorship W4378976849A5003668441 @default.
- W4378976849 hasAuthorship W4378976849A5044794348 @default.
- W4378976849 hasAuthorship W4378976849A5079485458 @default.
- W4378976849 hasAuthorship W4378976849A5081734527 @default.
- W4378976849 hasConcept C108583219 @default.
- W4378976849 hasConcept C119857082 @default.
- W4378976849 hasConcept C12713177 @default.
- W4378976849 hasConcept C153180895 @default.
- W4378976849 hasConcept C154945302 @default.
- W4378976849 hasConcept C2522767166 @default.
- W4378976849 hasConcept C2776151529 @default.
- W4378976849 hasConcept C2984842247 @default.
- W4378976849 hasConcept C2987819851 @default.
- W4378976849 hasConcept C37736160 @default.
- W4378976849 hasConcept C38652104 @default.
- W4378976849 hasConcept C41008148 @default.
- W4378976849 hasConcept C54355233 @default.
- W4378976849 hasConcept C59519942 @default.