Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378977202> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4378977202 abstract "Optimization design of the vehicle thin-walled structures (TWS) is one of the critical ways to reduce structural mass and enhance the mechanical properties of the whole body. Traditional numerical simulations are effective and have been widely used to solve this problem. However, carrying out a high-fidelity simulation is really time-consuming and the optimization design heavily relies on engineer's experience. In this work, a deep regression forest model (DRF) is used to approximately simulate the TWS physical system, and through an improved grey wolf optimizer (AIGWO), the optimization design is adaptively realized. Specifically, a multi-grained circular scanning and pooling-based cascade forest are used to build the DRF model. The mathematical expression of the DRF is generated. Compared with five state-of-the-art machine learning-based models, the DRF shows the best accuracy. Subsequently, a reward strategy is proposed to enable AIGWO to adaptively determine its optimization actions. Three classic TWS vehicle parts are optimized. The results demonstrate that the AIGWO outperforms other four advanced swarm intelligence algorithms. The structural mass of three TWS cases are reduced and the mechanical properties are enhanced. The whole computational time based on the proposed method is highly shortened compared with numerical simulation. In conclusion, the proposed method can efficiently realize the optimization design of vehicle TWS problem." @default.
- W4378977202 created "2023-06-02" @default.
- W4378977202 creator A5002654282 @default.
- W4378977202 creator A5005859555 @default.
- W4378977202 creator A5007730317 @default.
- W4378977202 creator A5012287009 @default.
- W4378977202 creator A5034759932 @default.
- W4378977202 creator A5085407486 @default.
- W4378977202 date "2023-04-07" @default.
- W4378977202 modified "2023-09-25" @default.
- W4378977202 title "Optimization of Vehicle Structures based on Improved Deep Forest and Grey Wolf Optimizer" @default.
- W4378977202 cites W1997869834 @default.
- W4378977202 cites W2061438946 @default.
- W4378977202 cites W2069121327 @default.
- W4378977202 cites W2069697210 @default.
- W4378977202 cites W2081392227 @default.
- W4378977202 cites W2123162799 @default.
- W4378977202 cites W2158237256 @default.
- W4378977202 cites W2166432716 @default.
- W4378977202 cites W2181453853 @default.
- W4378977202 cites W2580562318 @default.
- W4378977202 cites W2784345611 @default.
- W4378977202 cites W2892035503 @default.
- W4378977202 cites W2909681712 @default.
- W4378977202 cites W2913038374 @default.
- W4378977202 cites W2934256928 @default.
- W4378977202 cites W2969913901 @default.
- W4378977202 cites W2972272556 @default.
- W4378977202 cites W2990065189 @default.
- W4378977202 cites W2996555292 @default.
- W4378977202 cites W3000752945 @default.
- W4378977202 cites W3017363841 @default.
- W4378977202 cites W3095698043 @default.
- W4378977202 cites W3098545775 @default.
- W4378977202 cites W3115577510 @default.
- W4378977202 cites W3118753791 @default.
- W4378977202 cites W3126175510 @default.
- W4378977202 cites W3128426437 @default.
- W4378977202 cites W3135434656 @default.
- W4378977202 cites W3139258787 @default.
- W4378977202 cites W3159734965 @default.
- W4378977202 cites W3167824072 @default.
- W4378977202 cites W3201626219 @default.
- W4378977202 cites W4214717370 @default.
- W4378977202 cites W4232714830 @default.
- W4378977202 cites W784175507 @default.
- W4378977202 doi "https://doi.org/10.1109/iccea58433.2023.10135183" @default.
- W4378977202 hasPublicationYear "2023" @default.
- W4378977202 type Work @default.
- W4378977202 citedByCount "0" @default.
- W4378977202 crossrefType "proceedings-article" @default.
- W4378977202 hasAuthorship W4378977202A5002654282 @default.
- W4378977202 hasAuthorship W4378977202A5005859555 @default.
- W4378977202 hasAuthorship W4378977202A5007730317 @default.
- W4378977202 hasAuthorship W4378977202A5012287009 @default.
- W4378977202 hasAuthorship W4378977202A5034759932 @default.
- W4378977202 hasAuthorship W4378977202A5085407486 @default.
- W4378977202 hasConcept C11413529 @default.
- W4378977202 hasConcept C126255220 @default.
- W4378977202 hasConcept C154945302 @default.
- W4378977202 hasConcept C33923547 @default.
- W4378977202 hasConcept C41008148 @default.
- W4378977202 hasConcept C70437156 @default.
- W4378977202 hasConceptScore W4378977202C11413529 @default.
- W4378977202 hasConceptScore W4378977202C126255220 @default.
- W4378977202 hasConceptScore W4378977202C154945302 @default.
- W4378977202 hasConceptScore W4378977202C33923547 @default.
- W4378977202 hasConceptScore W4378977202C41008148 @default.
- W4378977202 hasConceptScore W4378977202C70437156 @default.
- W4378977202 hasFunder F4320321001 @default.
- W4378977202 hasFunder F4320335777 @default.
- W4378977202 hasLocation W43789772021 @default.
- W4378977202 hasOpenAccess W4378977202 @default.
- W4378977202 hasPrimaryLocation W43789772021 @default.
- W4378977202 hasRelatedWork W2179719292 @default.
- W4378977202 hasRelatedWork W2291847203 @default.
- W4378977202 hasRelatedWork W2424871898 @default.
- W4378977202 hasRelatedWork W2558383949 @default.
- W4378977202 hasRelatedWork W2788663687 @default.
- W4378977202 hasRelatedWork W2792080776 @default.
- W4378977202 hasRelatedWork W2911599258 @default.
- W4378977202 hasRelatedWork W2951391129 @default.
- W4378977202 hasRelatedWork W3003425109 @default.
- W4378977202 hasRelatedWork W3019077034 @default.
- W4378977202 isParatext "false" @default.
- W4378977202 isRetracted "false" @default.
- W4378977202 workType "article" @default.