Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378977327> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4378977327 abstract "A tropical fruit with great economic significance, citrus is cultivated and farmed in almost 150 different nations. A total of about 157.98 million tons of citrus fruit are produced worldwide. Citrus plant diseases have a major negative impact on the citrus fruit market as well as production in terms of quantity as well as quality. Attention must be paid to citrus fruits and leaves in order to promptly diagnose and treat problems; failing to do so results in severe financial loss. Citrus plant diseases cause a yearly loss of about 50% of citrus fruits at citrus farming operations. In this study, to produce the vector representation of the images, we used three deep learning image embedders namely Inception V3, VGG16, and Squeeze net. We used five machine learning models, including Random Forest, KNN, Gradient Boosting, SGD, and Neural Network with 5-fold Cross Validation, to predict citrus diseases. Using the considered dataset, the classification performance of each independently tuned ML model across all of its ensembles has been obtained. The neural network with Inception V3 as image embedder has obtained maximum average accuracy of 96.6%, 96.6% recall, 96.5% precision, and 96.5% F1 Score. Finally, our prediction model offers a reliable technique for accurate detection of citrus diseases to assist farmers." @default.
- W4378977327 created "2023-06-02" @default.
- W4378977327 creator A5020311629 @default.
- W4378977327 creator A5024238107 @default.
- W4378977327 creator A5035714029 @default.
- W4378977327 creator A5092063912 @default.
- W4378977327 creator A5092063913 @default.
- W4378977327 creator A5092063914 @default.
- W4378977327 date "2023-03-18" @default.
- W4378977327 modified "2023-09-25" @default.
- W4378977327 title "Screening of Citrus Diseases Using Deep Learning Embedders and Machine Learning Techniques" @default.
- W4378977327 cites W1984395885 @default.
- W4378977327 cites W1991424147 @default.
- W4378977327 cites W2969364300 @default.
- W4378977327 cites W2985627780 @default.
- W4378977327 cites W3048493999 @default.
- W4378977327 cites W3080761702 @default.
- W4378977327 cites W3093041678 @default.
- W4378977327 cites W3111432325 @default.
- W4378977327 cites W3162088729 @default.
- W4378977327 cites W4205458670 @default.
- W4378977327 cites W4211104684 @default.
- W4378977327 cites W4211112186 @default.
- W4378977327 cites W4221068845 @default.
- W4378977327 doi "https://doi.org/10.1109/aisp57993.2023.10134971" @default.
- W4378977327 hasPublicationYear "2023" @default.
- W4378977327 type Work @default.
- W4378977327 citedByCount "0" @default.
- W4378977327 crossrefType "proceedings-article" @default.
- W4378977327 hasAuthorship W4378977327A5020311629 @default.
- W4378977327 hasAuthorship W4378977327A5024238107 @default.
- W4378977327 hasAuthorship W4378977327A5035714029 @default.
- W4378977327 hasAuthorship W4378977327A5092063912 @default.
- W4378977327 hasAuthorship W4378977327A5092063913 @default.
- W4378977327 hasAuthorship W4378977327A5092063914 @default.
- W4378977327 hasConcept C108583219 @default.
- W4378977327 hasConcept C119857082 @default.
- W4378977327 hasConcept C12267149 @default.
- W4378977327 hasConcept C127413603 @default.
- W4378977327 hasConcept C144027150 @default.
- W4378977327 hasConcept C154945302 @default.
- W4378977327 hasConcept C169258074 @default.
- W4378977327 hasConcept C3017491081 @default.
- W4378977327 hasConcept C33923547 @default.
- W4378977327 hasConcept C41008148 @default.
- W4378977327 hasConcept C46686674 @default.
- W4378977327 hasConcept C50644808 @default.
- W4378977327 hasConcept C70153297 @default.
- W4378977327 hasConcept C86803240 @default.
- W4378977327 hasConcept C88463610 @default.
- W4378977327 hasConceptScore W4378977327C108583219 @default.
- W4378977327 hasConceptScore W4378977327C119857082 @default.
- W4378977327 hasConceptScore W4378977327C12267149 @default.
- W4378977327 hasConceptScore W4378977327C127413603 @default.
- W4378977327 hasConceptScore W4378977327C144027150 @default.
- W4378977327 hasConceptScore W4378977327C154945302 @default.
- W4378977327 hasConceptScore W4378977327C169258074 @default.
- W4378977327 hasConceptScore W4378977327C3017491081 @default.
- W4378977327 hasConceptScore W4378977327C33923547 @default.
- W4378977327 hasConceptScore W4378977327C41008148 @default.
- W4378977327 hasConceptScore W4378977327C46686674 @default.
- W4378977327 hasConceptScore W4378977327C50644808 @default.
- W4378977327 hasConceptScore W4378977327C70153297 @default.
- W4378977327 hasConceptScore W4378977327C86803240 @default.
- W4378977327 hasConceptScore W4378977327C88463610 @default.
- W4378977327 hasLocation W43789773271 @default.
- W4378977327 hasOpenAccess W4378977327 @default.
- W4378977327 hasPrimaryLocation W43789773271 @default.
- W4378977327 hasRelatedWork W2767034401 @default.
- W4378977327 hasRelatedWork W3081330590 @default.
- W4378977327 hasRelatedWork W3195168932 @default.
- W4378977327 hasRelatedWork W3204641204 @default.
- W4378977327 hasRelatedWork W4220785415 @default.
- W4378977327 hasRelatedWork W4281616679 @default.
- W4378977327 hasRelatedWork W4288057626 @default.
- W4378977327 hasRelatedWork W4293069612 @default.
- W4378977327 hasRelatedWork W4308191010 @default.
- W4378977327 hasRelatedWork W4311106074 @default.
- W4378977327 isParatext "false" @default.
- W4378977327 isRetracted "false" @default.
- W4378977327 workType "article" @default.