Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378977488> ?p ?o ?g. }
- W4378977488 endingPage "28092" @default.
- W4378977488 startingPage "28084" @default.
- W4378977488 abstract "Stabilizing the escalating CO2 levels in the atmosphere is a grand challenge in view of the increasing global demand for energy, the majority of which currently comes from the burning of fossil fuels. Capturing CO2 from point source emissions using solid adsorbents may play a part in meeting this challenge, and metal–organic frameworks (MOFs) are considered to be a promising class of materials for this purpose. It is important to consider the co-adsorption of water when designing materials for CO2 capture from post-combustion flue gases. Computational high-throughput screening (HTS) is a powerful tool to identify top-performing candidates for a particular application from a large material database. Using a multi-scale modeling strategy that includes a machine learning model, density functional theory (DFT) calculations, force field (FF) optimization, and grand canonical Monte Carlo (GCMC) simulations, we carried out a systematic computational HTS of the all-solvent-removed version of the computation-ready experimental metal–organic framework (CoRE-MOF-2019) database for selective adsorption of CO2 from a wet flue gas mixture. After initial screening based on the pore diameters, a total of 3703 unique MOFs from the database were considered for screening based on the FF interaction energies of CO2, N2, and H2O molecules with the MOFs. MOFs showing stronger interactions with CO2 compared to that with H2O and N2 were considered for the next level of screening based on the interaction energies calculated from DFT. CO2-selective MOFs from DFT screening were further screened using two-component (CO2 and N2) and finally three-component (CO2, N2, and H2O) GCMC simulations to predict the CO2 capacity and CO2/N2 selectivity. Our screening study identified MOFs that show selective CO2 adsorption under wet flue gas conditions with significant CO2 uptake capacity and CO2/N2 selectivity in the presence of water vapor. We also analyzed the nature of pore confinements responsible for the observed CO2 selectivity." @default.
- W4378977488 created "2023-06-02" @default.
- W4378977488 creator A5019016673 @default.
- W4378977488 creator A5067892409 @default.
- W4378977488 date "2023-06-01" @default.
- W4378977488 modified "2023-09-30" @default.
- W4378977488 title "High-Throughput Screening of the CoRE-MOF-2019 Database for CO<sub>2</sub> Capture from Wet Flue Gas: A Multi-Scale Modeling Strategy" @default.
- W4378977488 cites W1677747913 @default.
- W4378977488 cites W1798528872 @default.
- W4378977488 cites W1934828362 @default.
- W4378977488 cites W1970127494 @default.
- W4378977488 cites W1976499671 @default.
- W4378977488 cites W1976675267 @default.
- W4378977488 cites W1979544533 @default.
- W4378977488 cites W1981368803 @default.
- W4378977488 cites W1986829915 @default.
- W4378977488 cites W2002272498 @default.
- W4378977488 cites W2003366790 @default.
- W4378977488 cites W2007395042 @default.
- W4378977488 cites W2015197254 @default.
- W4378977488 cites W2026277606 @default.
- W4378977488 cites W2028056984 @default.
- W4378977488 cites W2030971064 @default.
- W4378977488 cites W2040995650 @default.
- W4378977488 cites W2062269633 @default.
- W4378977488 cites W2066339511 @default.
- W4378977488 cites W2076949647 @default.
- W4378977488 cites W2083222334 @default.
- W4378977488 cites W2084266203 @default.
- W4378977488 cites W2089979931 @default.
- W4378977488 cites W2091586202 @default.
- W4378977488 cites W2096747776 @default.
- W4378977488 cites W2100716186 @default.
- W4378977488 cites W2113634157 @default.
- W4378977488 cites W2121022470 @default.
- W4378977488 cites W2131360749 @default.
- W4378977488 cites W2138085558 @default.
- W4378977488 cites W2148216610 @default.
- W4378977488 cites W2156454985 @default.
- W4378977488 cites W2165563335 @default.
- W4378977488 cites W2304767338 @default.
- W4378977488 cites W2317987102 @default.
- W4378977488 cites W2320156247 @default.
- W4378977488 cites W2323599744 @default.
- W4378977488 cites W2325161613 @default.
- W4378977488 cites W2334799760 @default.
- W4378977488 cites W2341002069 @default.
- W4378977488 cites W2342882870 @default.
- W4378977488 cites W2402187377 @default.
- W4378977488 cites W2430656774 @default.
- W4378977488 cites W2477148507 @default.
- W4378977488 cites W2519634887 @default.
- W4378977488 cites W2566935800 @default.
- W4378977488 cites W2589651846 @default.
- W4378977488 cites W2592499433 @default.
- W4378977488 cites W2595504053 @default.
- W4378977488 cites W2599075544 @default.
- W4378977488 cites W2605105641 @default.
- W4378977488 cites W2756398738 @default.
- W4378977488 cites W2766752025 @default.
- W4378977488 cites W2774131705 @default.
- W4378977488 cites W2784110056 @default.
- W4378977488 cites W2799969266 @default.
- W4378977488 cites W2891721621 @default.
- W4378977488 cites W2947903758 @default.
- W4378977488 cites W2978283457 @default.
- W4378977488 cites W2980373312 @default.
- W4378977488 cites W2981683510 @default.
- W4378977488 cites W2983028326 @default.
- W4378977488 cites W2992843173 @default.
- W4378977488 cites W3002561488 @default.
- W4378977488 cites W3138000221 @default.
- W4378977488 cites W3143460494 @default.
- W4378977488 cites W3159296886 @default.
- W4378977488 cites W3161721766 @default.
- W4378977488 cites W3183503949 @default.
- W4378977488 cites W3188171149 @default.
- W4378977488 doi "https://doi.org/10.1021/acsami.3c04079" @default.
- W4378977488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37262369" @default.
- W4378977488 hasPublicationYear "2023" @default.
- W4378977488 type Work @default.
- W4378977488 citedByCount "4" @default.
- W4378977488 countsByYear W43789774882023 @default.
- W4378977488 crossrefType "journal-article" @default.
- W4378977488 hasAuthorship W4378977488A5019016673 @default.
- W4378977488 hasAuthorship W4378977488A5067892409 @default.
- W4378977488 hasConcept C127413603 @default.
- W4378977488 hasConcept C147597530 @default.
- W4378977488 hasConcept C147789679 @default.
- W4378977488 hasConcept C150394285 @default.
- W4378977488 hasConcept C152365726 @default.
- W4378977488 hasConcept C157764524 @default.
- W4378977488 hasConcept C167206829 @default.
- W4378977488 hasConcept C171250308 @default.
- W4378977488 hasConcept C178790620 @default.
- W4378977488 hasConcept C179366358 @default.
- W4378977488 hasConcept C185592680 @default.
- W4378977488 hasConcept C192562407 @default.