Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378977778> ?p ?o ?g. }
- W4378977778 endingPage "110684" @default.
- W4378977778 startingPage "110684" @default.
- W4378977778 abstract "The geological hazard of landslide or debris flow is one of the most widespread causes of mortality every year. Segmentation for them has been an effective tool to reduce the number of casualties since its critical contribution to rescue planning. However, existing segmentation methodologies are mainly designed for natural imagery in which most objects have similar shapes and sizes. In contrast to them, landslides and debris flow usually take irregular contour and arbitrary scope, causing most existing methodologies to suffer from low performance. Therefore, it is imperative to design a novel segmentation method that is specific to geological hazard auto-detection. To address these issues, we propose a correlation weighted network (CoWNet) to precisely segment the hazard by concentrating on the negative impact of irregular contour and arbitrary scope. The CoWNet gains profits from two elaborately designed modules, named correlation weighted module (CoW) and feature fusion module (FFM), respectively. Firstly, in contrast to the common preference to blindly expand the receptive field of existing methods, the CoW module chooses to adjust the receptive field based on disaster scope adaptively. The CoW module enables the receptive field of the CoWNet to encompass any scope of hazards. Meanwhile, another module, FFM, is used to relieve the adverse effect brought by the irregular contour problem. The core idea of FFM is to utilize sophisticated semantic context to preliminarily locate the overall disaster and detailed local cues to refine disaster edges. Through the above strategies, the CoWNet could precisely segment any shape and scope of landslides or debris flow. To verify the superiority of the CoWNet, we compare our network with several state-of-art segmentation networks in a high-resolution geological hazard dataset, including landslide and debris flow disasters. The results demonstrate our model outperforms other state-of-the-art models." @default.
- W4378977778 created "2023-06-02" @default.
- W4378977778 creator A5031202827 @default.
- W4378977778 creator A5041929795 @default.
- W4378977778 creator A5054429480 @default.
- W4378977778 creator A5058424709 @default.
- W4378977778 creator A5081305410 @default.
- W4378977778 creator A5091806934 @default.
- W4378977778 date "2023-09-01" @default.
- W4378977778 modified "2023-10-18" @default.
- W4378977778 title "CoWNet: A correlation weighted network for geological hazard detection" @default.
- W4378977778 cites W1792711675 @default.
- W4378977778 cites W1854179756 @default.
- W4378977778 cites W1903029394 @default.
- W4378977778 cites W1971024845 @default.
- W4378977778 cites W1982623886 @default.
- W4378977778 cites W1987226764 @default.
- W4378977778 cites W2004659921 @default.
- W4378977778 cites W2059613337 @default.
- W4378977778 cites W2065217067 @default.
- W4378977778 cites W2083211355 @default.
- W4378977778 cites W2162380055 @default.
- W4378977778 cites W2194775991 @default.
- W4378977778 cites W2500686813 @default.
- W4378977778 cites W2560023338 @default.
- W4378977778 cites W2562131513 @default.
- W4378977778 cites W2910628332 @default.
- W4378977778 cites W2912361013 @default.
- W4378977778 cites W2964309882 @default.
- W4378977778 cites W3003882269 @default.
- W4378977778 cites W3010846872 @default.
- W4378977778 cites W3034502973 @default.
- W4378977778 cites W3081064176 @default.
- W4378977778 cites W3091852895 @default.
- W4378977778 cites W3132455321 @default.
- W4378977778 cites W3135436966 @default.
- W4378977778 cites W3173420347 @default.
- W4378977778 cites W3198020043 @default.
- W4378977778 cites W3206541388 @default.
- W4378977778 cites W3211512919 @default.
- W4378977778 cites W4205806420 @default.
- W4378977778 cites W4225672218 @default.
- W4378977778 cites W4283808550 @default.
- W4378977778 cites W4312309807 @default.
- W4378977778 cites W4312689172 @default.
- W4378977778 cites W4312766229 @default.
- W4378977778 cites W4313023122 @default.
- W4378977778 cites W4324387079 @default.
- W4378977778 doi "https://doi.org/10.1016/j.knosys.2023.110684" @default.
- W4378977778 hasPublicationYear "2023" @default.
- W4378977778 type Work @default.
- W4378977778 citedByCount "0" @default.
- W4378977778 crossrefType "journal-article" @default.
- W4378977778 hasAuthorship W4378977778A5031202827 @default.
- W4378977778 hasAuthorship W4378977778A5041929795 @default.
- W4378977778 hasAuthorship W4378977778A5054429480 @default.
- W4378977778 hasAuthorship W4378977778A5058424709 @default.
- W4378977778 hasAuthorship W4378977778A5081305410 @default.
- W4378977778 hasAuthorship W4378977778A5091806934 @default.
- W4378977778 hasConcept C111368507 @default.
- W4378977778 hasConcept C124101348 @default.
- W4378977778 hasConcept C127313418 @default.
- W4378977778 hasConcept C138885662 @default.
- W4378977778 hasConcept C151730666 @default.
- W4378977778 hasConcept C154945302 @default.
- W4378977778 hasConcept C178790620 @default.
- W4378977778 hasConcept C185592680 @default.
- W4378977778 hasConcept C186295008 @default.
- W4378977778 hasConcept C187320778 @default.
- W4378977778 hasConcept C199360897 @default.
- W4378977778 hasConcept C202444582 @default.
- W4378977778 hasConcept C2776023875 @default.
- W4378977778 hasConcept C2776401178 @default.
- W4378977778 hasConcept C2776502983 @default.
- W4378977778 hasConcept C2776643431 @default.
- W4378977778 hasConcept C2778012447 @default.
- W4378977778 hasConcept C2779343474 @default.
- W4378977778 hasConcept C33923547 @default.
- W4378977778 hasConcept C41008148 @default.
- W4378977778 hasConcept C41895202 @default.
- W4378977778 hasConcept C49261128 @default.
- W4378977778 hasConcept C89600930 @default.
- W4378977778 hasConcept C9652623 @default.
- W4378977778 hasConceptScore W4378977778C111368507 @default.
- W4378977778 hasConceptScore W4378977778C124101348 @default.
- W4378977778 hasConceptScore W4378977778C127313418 @default.
- W4378977778 hasConceptScore W4378977778C138885662 @default.
- W4378977778 hasConceptScore W4378977778C151730666 @default.
- W4378977778 hasConceptScore W4378977778C154945302 @default.
- W4378977778 hasConceptScore W4378977778C178790620 @default.
- W4378977778 hasConceptScore W4378977778C185592680 @default.
- W4378977778 hasConceptScore W4378977778C186295008 @default.
- W4378977778 hasConceptScore W4378977778C187320778 @default.
- W4378977778 hasConceptScore W4378977778C199360897 @default.
- W4378977778 hasConceptScore W4378977778C202444582 @default.
- W4378977778 hasConceptScore W4378977778C2776023875 @default.
- W4378977778 hasConceptScore W4378977778C2776401178 @default.
- W4378977778 hasConceptScore W4378977778C2776502983 @default.