Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379011748> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4379011748 abstract "Diabetes is a chronic disease that affects millions of people worldwide. Accurate and timely diagnosis of diabetes is crucial for its effective treatment and management. While machine learning has shown promise in predicting the disease, missing data, outliers, class imbalance and limitations of classifiers can hinder accuracy. To address these challenges, we propose a novel machine learning approach that combines adaptive iterative imputation (AII) for missing value imputation, dynamic ensemble isolation forest (DE-IF) for outlier detection and removal, Iterated KMeans SMOTEENN (IKMSENN) for class imbalance, and an adaptive extra tree classifier (AETC) for classification. Our approach is evaluated using the Pima Indian Diabetes Dataset (PIDD), a widely used benchmark dataset in diabetes disease prediction. Experimental results show that our approach outperforms several state-of-the-art machine learning models in terms of accuracy, precision, recall, [Formula: see text]-measure, and the area under the receiver operating characteristic (ROC) curve (AUC-ROC). Our approach achieved an accuracy of 98.58%, with a precision of 0.986, recall of 0.987, [Formula: see text]-measure of 0.985, and ROC of 0.965 on the PIDD dataset. Our research presents a significant contribution to the field of diabetes disease prediction by introducing novel machine learning approaches that address common challenges such as missing data, outliers and class imbalance, as well as limitations of classifiers. Our approach has the potential to greatly improve the accuracy and effectiveness of diabetes disease prediction and has important implications for the diagnosis and management of the disease." @default.
- W4379011748 created "2023-06-02" @default.
- W4379011748 creator A5013193935 @default.
- W4379011748 creator A5016052398 @default.
- W4379011748 date "2023-07-28" @default.
- W4379011748 modified "2023-09-25" @default.
- W4379011748 title "Revolutionizing Diabetes Disease Prediction Through Novel Machine Learning Techniques" @default.
- W4379011748 doi "https://doi.org/10.1142/s179329202350056x" @default.
- W4379011748 hasPublicationYear "2023" @default.
- W4379011748 type Work @default.
- W4379011748 citedByCount "0" @default.
- W4379011748 crossrefType "journal-article" @default.
- W4379011748 hasAuthorship W4379011748A5013193935 @default.
- W4379011748 hasAuthorship W4379011748A5016052398 @default.
- W4379011748 hasConcept C119857082 @default.
- W4379011748 hasConcept C124101348 @default.
- W4379011748 hasConcept C154945302 @default.
- W4379011748 hasConcept C41008148 @default.
- W4379011748 hasConcept C58041806 @default.
- W4379011748 hasConcept C58471807 @default.
- W4379011748 hasConcept C79337645 @default.
- W4379011748 hasConcept C81669768 @default.
- W4379011748 hasConcept C9357733 @default.
- W4379011748 hasConcept C95623464 @default.
- W4379011748 hasConceptScore W4379011748C119857082 @default.
- W4379011748 hasConceptScore W4379011748C124101348 @default.
- W4379011748 hasConceptScore W4379011748C154945302 @default.
- W4379011748 hasConceptScore W4379011748C41008148 @default.
- W4379011748 hasConceptScore W4379011748C58041806 @default.
- W4379011748 hasConceptScore W4379011748C58471807 @default.
- W4379011748 hasConceptScore W4379011748C79337645 @default.
- W4379011748 hasConceptScore W4379011748C81669768 @default.
- W4379011748 hasConceptScore W4379011748C9357733 @default.
- W4379011748 hasConceptScore W4379011748C95623464 @default.
- W4379011748 hasLocation W43790117481 @default.
- W4379011748 hasOpenAccess W4379011748 @default.
- W4379011748 hasPrimaryLocation W43790117481 @default.
- W4379011748 hasRelatedWork W2478024380 @default.
- W4379011748 hasRelatedWork W2603470407 @default.
- W4379011748 hasRelatedWork W2769281072 @default.
- W4379011748 hasRelatedWork W2999081408 @default.
- W4379011748 hasRelatedWork W3136396548 @default.
- W4379011748 hasRelatedWork W3161168862 @default.
- W4379011748 hasRelatedWork W3164708448 @default.
- W4379011748 hasRelatedWork W3170920059 @default.
- W4379011748 hasRelatedWork W3182369648 @default.
- W4379011748 hasRelatedWork W4233910186 @default.
- W4379011748 isParatext "false" @default.
- W4379011748 isRetracted "false" @default.
- W4379011748 workType "article" @default.