Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379031106> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4379031106 abstract "Deep learning use is growing in many numerical simulation fields, and drug discovery does not escape this trend. Indeed, before proceeding with in vitro and then in vivo experiments, drug discovery now relies on in silico techniques such as molecular docking to narrow the number of experiments and identify the best candidates. This method explores the receptor surface and the ligand's conformational space, providing numerous ligand-receptor poses. All these poses are then scored and ranked by a scoring function allowing to predict the best poses among all, then compare different ligands regarding a given receptor or different targets regarding a given ligand. Since the 2010s, numerous deep learning methods have been used to tackle this problem. Nowadays, there are two significant trends in deep learning for molecular docking: (i) the augmentation of available structural data and (ii) the use of a new kind of neural network: the graph convolutional neural networks (GCNs). In this paper, we propose the study of training scalability of a GCN-a molecular complex scoring function-on an increasing number of GPUs and with a variety of batch sizes. After a hyperparameter analysis, we achieve an 80% reduction in the training time, but this improvement sometimes involves a performance metrics degradation that the final users must ponder." @default.
- W4379031106 created "2023-06-02" @default.
- W4379031106 creator A5015507624 @default.
- W4379031106 creator A5057587979 @default.
- W4379031106 creator A5078044114 @default.
- W4379031106 creator A5084564692 @default.
- W4379031106 date "2023-03-01" @default.
- W4379031106 modified "2023-09-25" @default.
- W4379031106 title "Convolutional graph neural network training scalability for molecular docking" @default.
- W4379031106 cites W2587598315 @default.
- W4379031106 cites W2902812092 @default.
- W4379031106 cites W2967778544 @default.
- W4379031106 cites W2968734407 @default.
- W4379031106 cites W3086105743 @default.
- W4379031106 cites W3199883166 @default.
- W4379031106 doi "https://doi.org/10.1109/pdp59025.2023.00042" @default.
- W4379031106 hasPublicationYear "2023" @default.
- W4379031106 type Work @default.
- W4379031106 citedByCount "0" @default.
- W4379031106 crossrefType "proceedings-article" @default.
- W4379031106 hasAuthorship W4379031106A5015507624 @default.
- W4379031106 hasAuthorship W4379031106A5057587979 @default.
- W4379031106 hasAuthorship W4379031106A5078044114 @default.
- W4379031106 hasAuthorship W4379031106A5084564692 @default.
- W4379031106 hasConcept C103697762 @default.
- W4379031106 hasConcept C104317684 @default.
- W4379031106 hasConcept C108583219 @default.
- W4379031106 hasConcept C119857082 @default.
- W4379031106 hasConcept C132525143 @default.
- W4379031106 hasConcept C154945302 @default.
- W4379031106 hasConcept C159110408 @default.
- W4379031106 hasConcept C2775905019 @default.
- W4379031106 hasConcept C41008148 @default.
- W4379031106 hasConcept C41685203 @default.
- W4379031106 hasConcept C48044578 @default.
- W4379031106 hasConcept C55493867 @default.
- W4379031106 hasConcept C60644358 @default.
- W4379031106 hasConcept C71924100 @default.
- W4379031106 hasConcept C74187038 @default.
- W4379031106 hasConcept C77088390 @default.
- W4379031106 hasConcept C80444323 @default.
- W4379031106 hasConcept C81363708 @default.
- W4379031106 hasConcept C8642999 @default.
- W4379031106 hasConcept C86803240 @default.
- W4379031106 hasConcept C99726746 @default.
- W4379031106 hasConceptScore W4379031106C103697762 @default.
- W4379031106 hasConceptScore W4379031106C104317684 @default.
- W4379031106 hasConceptScore W4379031106C108583219 @default.
- W4379031106 hasConceptScore W4379031106C119857082 @default.
- W4379031106 hasConceptScore W4379031106C132525143 @default.
- W4379031106 hasConceptScore W4379031106C154945302 @default.
- W4379031106 hasConceptScore W4379031106C159110408 @default.
- W4379031106 hasConceptScore W4379031106C2775905019 @default.
- W4379031106 hasConceptScore W4379031106C41008148 @default.
- W4379031106 hasConceptScore W4379031106C41685203 @default.
- W4379031106 hasConceptScore W4379031106C48044578 @default.
- W4379031106 hasConceptScore W4379031106C55493867 @default.
- W4379031106 hasConceptScore W4379031106C60644358 @default.
- W4379031106 hasConceptScore W4379031106C71924100 @default.
- W4379031106 hasConceptScore W4379031106C74187038 @default.
- W4379031106 hasConceptScore W4379031106C77088390 @default.
- W4379031106 hasConceptScore W4379031106C80444323 @default.
- W4379031106 hasConceptScore W4379031106C81363708 @default.
- W4379031106 hasConceptScore W4379031106C8642999 @default.
- W4379031106 hasConceptScore W4379031106C86803240 @default.
- W4379031106 hasConceptScore W4379031106C99726746 @default.
- W4379031106 hasLocation W43790311061 @default.
- W4379031106 hasOpenAccess W4379031106 @default.
- W4379031106 hasPrimaryLocation W43790311061 @default.
- W4379031106 hasRelatedWork W1714666523 @default.
- W4379031106 hasRelatedWork W1994909262 @default.
- W4379031106 hasRelatedWork W2337926734 @default.
- W4379031106 hasRelatedWork W2397305809 @default.
- W4379031106 hasRelatedWork W3130227562 @default.
- W4379031106 hasRelatedWork W3206248117 @default.
- W4379031106 hasRelatedWork W4283697347 @default.
- W4379031106 hasRelatedWork W4292596087 @default.
- W4379031106 hasRelatedWork W4304182771 @default.
- W4379031106 hasRelatedWork W4311257506 @default.
- W4379031106 isParatext "false" @default.
- W4379031106 isRetracted "false" @default.
- W4379031106 workType "article" @default.