Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379046940> ?p ?o ?g. }
- W4379046940 endingPage "107728" @default.
- W4379046940 startingPage "107728" @default.
- W4379046940 abstract "Due to the high nonlinearities and unstable working conditions, accurately estimating the state of charge (SOC) by the battery management system (BMS) is a major challenge in ensuring the safety and reliability of lithium-ion batteries in electric vehicles. This paper presents a deep learning network, a nonlinear autoregressive model with exogenous inputs (NARX) network with a closed-loop architecture and transfer learning mechanism, which is optimized using a proposed adaptive weighted square-root cubature Kalman filter (AWSCKF) with a moving sliding window and an adaptive weighing coefficient for SOC estimation of lithium-ion batteries. The proposed AWSCKF method is established through square-root and cubature updates to optimize the statistical value of the state estimate, error covariance, and measurement noise covariance matrices, with the ability to incorporate high nonlinearities to filter out the noise, stabilize, and optimize the final SOC. To evaluate the effectiveness of the optimized NARX network and verify the proposed AWSCKF method, battery tests are carried out using a lithium cobalt oxide battery at various charge-discharge rates and a lithium nickel cobalt manganese oxide battery at temperatures of 0 and 45 °C under five complex working conditions. The SOC accuracy of lithium-ion batteries is enhanced by the hybrid method estimation process, which is based on sensitivity analysis and adaptation to various working conditions. The comprehensive results show that the proposed NARX-AWSCKF model achieves the overall best mean absolute error, root mean square error, and mean absolute percentage error values of 0.07293%, 0.0912%, and 0.40356%, respectively, under various complex conditions. By effectively utilizing battery domain knowledge for real-world BMS applications, the proposed model outperforms other existing methods in terms of high effectiveness, robustness, and potential to boost the NARX performance." @default.
- W4379046940 created "2023-06-02" @default.
- W4379046940 creator A5002923681 @default.
- W4379046940 creator A5026615246 @default.
- W4379046940 creator A5064540145 @default.
- W4379046940 creator A5067420301 @default.
- W4379046940 creator A5071698421 @default.
- W4379046940 date "2023-09-01" @default.
- W4379046940 modified "2023-10-18" @default.
- W4379046940 title "A NARX network optimized with an adaptive weighted square-root cubature Kalman filter for the dynamic state of charge estimation of lithium-ion batteries" @default.
- W4379046940 cites W2613389393 @default.
- W4379046940 cites W2738719866 @default.
- W4379046940 cites W2804457427 @default.
- W4379046940 cites W2984331380 @default.
- W4379046940 cites W2995533873 @default.
- W4379046940 cites W2999725011 @default.
- W4379046940 cites W3009664539 @default.
- W4379046940 cites W3015632404 @default.
- W4379046940 cites W3018139049 @default.
- W4379046940 cites W3019324730 @default.
- W4379046940 cites W3035704836 @default.
- W4379046940 cites W3036494826 @default.
- W4379046940 cites W3093838722 @default.
- W4379046940 cites W3108398365 @default.
- W4379046940 cites W3109662432 @default.
- W4379046940 cites W3111705138 @default.
- W4379046940 cites W3118729509 @default.
- W4379046940 cites W3127251381 @default.
- W4379046940 cites W3138581309 @default.
- W4379046940 cites W3139303317 @default.
- W4379046940 cites W3140618672 @default.
- W4379046940 cites W3153898906 @default.
- W4379046940 cites W3172280330 @default.
- W4379046940 cites W3172458106 @default.
- W4379046940 cites W3190406982 @default.
- W4379046940 cites W3195309122 @default.
- W4379046940 cites W3196003773 @default.
- W4379046940 cites W3200269691 @default.
- W4379046940 cites W3203257659 @default.
- W4379046940 cites W3207845963 @default.
- W4379046940 cites W3217140314 @default.
- W4379046940 cites W4205629695 @default.
- W4379046940 cites W4210766218 @default.
- W4379046940 cites W4213414089 @default.
- W4379046940 cites W4214588709 @default.
- W4379046940 cites W4214768281 @default.
- W4379046940 cites W4220909851 @default.
- W4379046940 cites W4220961898 @default.
- W4379046940 cites W4223550608 @default.
- W4379046940 cites W4226317036 @default.
- W4379046940 cites W4226424620 @default.
- W4379046940 cites W4226427680 @default.
- W4379046940 cites W4280652664 @default.
- W4379046940 cites W4281570656 @default.
- W4379046940 cites W4282822766 @default.
- W4379046940 cites W4283388987 @default.
- W4379046940 cites W4283729826 @default.
- W4379046940 cites W4283767610 @default.
- W4379046940 cites W4285792128 @default.
- W4379046940 cites W4289201283 @default.
- W4379046940 cites W4289262437 @default.
- W4379046940 cites W4289544242 @default.
- W4379046940 cites W4289886473 @default.
- W4379046940 cites W4290098823 @default.
- W4379046940 cites W4290790443 @default.
- W4379046940 cites W4292018252 @default.
- W4379046940 cites W4292158992 @default.
- W4379046940 cites W4292581506 @default.
- W4379046940 cites W4300818585 @default.
- W4379046940 cites W4327566643 @default.
- W4379046940 cites W4367610339 @default.
- W4379046940 doi "https://doi.org/10.1016/j.est.2023.107728" @default.
- W4379046940 hasPublicationYear "2023" @default.
- W4379046940 type Work @default.
- W4379046940 citedByCount "3" @default.
- W4379046940 countsByYear W43790469402023 @default.
- W4379046940 crossrefType "journal-article" @default.
- W4379046940 hasAuthorship W4379046940A5002923681 @default.
- W4379046940 hasAuthorship W4379046940A5026615246 @default.
- W4379046940 hasAuthorship W4379046940A5064540145 @default.
- W4379046940 hasAuthorship W4379046940A5067420301 @default.
- W4379046940 hasAuthorship W4379046940A5071698421 @default.
- W4379046940 hasConcept C105795698 @default.
- W4379046940 hasConcept C115961682 @default.
- W4379046940 hasConcept C121332964 @default.
- W4379046940 hasConcept C139945424 @default.
- W4379046940 hasConcept C154945302 @default.
- W4379046940 hasConcept C157286648 @default.
- W4379046940 hasConcept C159877910 @default.
- W4379046940 hasConcept C163258240 @default.
- W4379046940 hasConcept C2775924081 @default.
- W4379046940 hasConcept C2776582896 @default.
- W4379046940 hasConcept C33923547 @default.
- W4379046940 hasConcept C41008148 @default.
- W4379046940 hasConcept C42536954 @default.
- W4379046940 hasConcept C47446073 @default.
- W4379046940 hasConcept C555008776 @default.
- W4379046940 hasConcept C62520636 @default.