Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379055761> ?p ?o ?g. }
- W4379055761 endingPage "4215" @default.
- W4379055761 startingPage "4185" @default.
- W4379055761 abstract "<abstract> <p>Convolutional neural networks (CNNs) utilize local translation invariance in the Euclidean domain and have remarkable achievements in computer vision tasks. However, there are many data types with non-Euclidean structures, such as social networks, chemical molecules, knowledge graphs, etc., which are crucial to real-world applications. The graph convolutional neural network (GCN), as a derivative of CNNs for non-Euclidean data, was established for non-Euclidean graph data. In this paper, we mainly survey the progress of GCNs and introduce in detail several basic models based on GCNs. First, we review the challenges in building GCNs, including large-scale graph data, directed graphs and multi-scale graph tasks. Also, we briefly discuss some applications of GCNs, including computer vision, transportation networks and other fields. Furthermore, we point out some open issues and highlight some future research trends for GCNs.</p> </abstract>" @default.
- W4379055761 created "2023-06-02" @default.
- W4379055761 creator A5014874717 @default.
- W4379055761 creator A5051555459 @default.
- W4379055761 creator A5074167463 @default.
- W4379055761 creator A5086917578 @default.
- W4379055761 date "2023-01-01" @default.
- W4379055761 modified "2023-09-25" @default.
- W4379055761 title "A comprehensive review of graph convolutional networks: approaches and applications" @default.
- W4379055761 cites W1990488619 @default.
- W4379055761 cites W1991252559 @default.
- W4379055761 cites W2101491865 @default.
- W4379055761 cites W2118246710 @default.
- W4379055761 cites W2558460151 @default.
- W4379055761 cites W2610034660 @default.
- W4379055761 cites W2768308213 @default.
- W4379055761 cites W2947812485 @default.
- W4379055761 cites W2949911880 @default.
- W4379055761 cites W2950777612 @default.
- W4379055761 cites W2952768212 @default.
- W4379055761 cites W2953311841 @default.
- W4379055761 cites W2958123697 @default.
- W4379055761 cites W2962946486 @default.
- W4379055761 cites W2963084622 @default.
- W4379055761 cites W2963235422 @default.
- W4379055761 cites W2968149264 @default.
- W4379055761 cites W2969259882 @default.
- W4379055761 cites W2991494819 @default.
- W4379055761 cites W2993822271 @default.
- W4379055761 cites W2997002052 @default.
- W4379055761 cites W2997013919 @default.
- W4379055761 cites W2997987465 @default.
- W4379055761 cites W3001143197 @default.
- W4379055761 cites W3004545174 @default.
- W4379055761 cites W3006158479 @default.
- W4379055761 cites W3006604457 @default.
- W4379055761 cites W3006893391 @default.
- W4379055761 cites W3008579601 @default.
- W4379055761 cites W3008798487 @default.
- W4379055761 cites W3010338999 @default.
- W4379055761 cites W3011667710 @default.
- W4379055761 cites W3012244339 @default.
- W4379055761 cites W3013545406 @default.
- W4379055761 cites W3017207875 @default.
- W4379055761 cites W3018999968 @default.
- W4379055761 cites W3025102114 @default.
- W4379055761 cites W3025313707 @default.
- W4379055761 cites W3026308742 @default.
- W4379055761 cites W3033736933 @default.
- W4379055761 cites W3033821083 @default.
- W4379055761 cites W3035312370 @default.
- W4379055761 cites W3037702327 @default.
- W4379055761 cites W3091336992 @default.
- W4379055761 cites W3176719207 @default.
- W4379055761 doi "https://doi.org/10.3934/era.2023213" @default.
- W4379055761 hasPublicationYear "2023" @default.
- W4379055761 type Work @default.
- W4379055761 citedByCount "0" @default.
- W4379055761 crossrefType "journal-article" @default.
- W4379055761 hasAuthorship W4379055761A5014874717 @default.
- W4379055761 hasAuthorship W4379055761A5051555459 @default.
- W4379055761 hasAuthorship W4379055761A5074167463 @default.
- W4379055761 hasAuthorship W4379055761A5086917578 @default.
- W4379055761 hasBestOaLocation W43790557611 @default.
- W4379055761 hasConcept C104317684 @default.
- W4379055761 hasConcept C105580179 @default.
- W4379055761 hasConcept C120174047 @default.
- W4379055761 hasConcept C129782007 @default.
- W4379055761 hasConcept C132525143 @default.
- W4379055761 hasConcept C149364088 @default.
- W4379055761 hasConcept C154945302 @default.
- W4379055761 hasConcept C185592680 @default.
- W4379055761 hasConcept C2524010 @default.
- W4379055761 hasConcept C33923547 @default.
- W4379055761 hasConcept C41008148 @default.
- W4379055761 hasConcept C55493867 @default.
- W4379055761 hasConcept C80444323 @default.
- W4379055761 hasConcept C81363708 @default.
- W4379055761 hasConceptScore W4379055761C104317684 @default.
- W4379055761 hasConceptScore W4379055761C105580179 @default.
- W4379055761 hasConceptScore W4379055761C120174047 @default.
- W4379055761 hasConceptScore W4379055761C129782007 @default.
- W4379055761 hasConceptScore W4379055761C132525143 @default.
- W4379055761 hasConceptScore W4379055761C149364088 @default.
- W4379055761 hasConceptScore W4379055761C154945302 @default.
- W4379055761 hasConceptScore W4379055761C185592680 @default.
- W4379055761 hasConceptScore W4379055761C2524010 @default.
- W4379055761 hasConceptScore W4379055761C33923547 @default.
- W4379055761 hasConceptScore W4379055761C41008148 @default.
- W4379055761 hasConceptScore W4379055761C55493867 @default.
- W4379055761 hasConceptScore W4379055761C80444323 @default.
- W4379055761 hasConceptScore W4379055761C81363708 @default.
- W4379055761 hasIssue "7" @default.
- W4379055761 hasLocation W43790557611 @default.
- W4379055761 hasOpenAccess W4379055761 @default.
- W4379055761 hasPrimaryLocation W43790557611 @default.
- W4379055761 hasRelatedWork W2064597564 @default.
- W4379055761 hasRelatedWork W2091551544 @default.