Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379057002> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4379057002 endingPage "E17" @default.
- W4379057002 startingPage "E17" @default.
- W4379057002 abstract "OBJECTIVE The clinical behavior of meningiomas is not entirely captured by its designated WHO grade, therefore other factors must be elucidated that portend increased tumor aggressiveness and associated risk of recurrence. In this study, the authors identify multiparametric MRI radiomic signatures of meningiomas using Ki-67 as a prognostic marker of clinical outcomes independent of WHO grade. METHODS A retrospective analysis was conducted of all resected meningiomas between 2012 and 2018. Preoperative MR images were used for high-throughput radiomic feature extraction and subsequently used to develop a machine learning algorithm to stratify meningiomas based on Ki-67 indices < 5% and ≥ 5%, independent of WHO grade. Progression-free survival (PFS) was assessed based on machine learning prediction of Ki-67 strata and compared with outcomes based on histopathological Ki-67. RESULTS Three hundred forty-three meningiomas were included: 291 with WHO grade I, 43 with grade II, and 9 with grade III. The overall rate of recurrence was 19.8% (15.1% in grade I, 44.2% in grade II, and 77.8% in grade III) over a median follow-up of 28.5 months. Grade II and III tumors had higher Ki-67 indices than grade I tumors, albeit tumor and peritumoral edema volumes had considerable variation independent of meningioma WHO grade. Forty-six high-performing radiomic features (1 morphological, 7 intensity-based, and 38 textural) were identified and used to build a support vector machine model to stratify tumors based on a Ki-67 cutoff of 5%, with resultant areas under the curve of 0.83 (95% CI 0.78–0.89) and 0.84 (95% CI 0.75–0.94) achieved for the discovery (n = 257) and validation (n = 86) data sets, respectively. Comparison of histopathological Ki-67 versus machine learning–predicted Ki-67 showed excellent performance (overall accuracy > 80%), with classification of grade I meningiomas exhibiting the greatest accuracy. Prediction of Ki-67 by machine learning classifier revealed shorter PFS for meningiomas with Ki-67 indices ≥ 5% compared with tumors with Ki-67 < 5% (p < 0.0001, log-rank test), which corroborates divergent patient outcomes observed using histopathological Ki-67. CONCLUSIONS The Ki-67 proliferation index may serve as a surrogate marker of increased meningioma aggressiveness independent of WHO grade. Machine learning using radiomic feature analysis may be used for the preoperative prediction of meningioma Ki-67, which provides enhanced analytical insights to help improve diagnostic classification and guide patient-specific treatment strategies." @default.
- W4379057002 created "2023-06-02" @default.
- W4379057002 creator A5000168473 @default.
- W4379057002 creator A5008406273 @default.
- W4379057002 creator A5014352993 @default.
- W4379057002 creator A5023589639 @default.
- W4379057002 creator A5034999945 @default.
- W4379057002 creator A5045143686 @default.
- W4379057002 creator A5047276743 @default.
- W4379057002 creator A5048854366 @default.
- W4379057002 creator A5059909608 @default.
- W4379057002 creator A5061164194 @default.
- W4379057002 creator A5064222905 @default.
- W4379057002 creator A5065419518 @default.
- W4379057002 creator A5067700684 @default.
- W4379057002 creator A5069639187 @default.
- W4379057002 creator A5082053300 @default.
- W4379057002 creator A5082429442 @default.
- W4379057002 creator A5091313692 @default.
- W4379057002 creator A5091351888 @default.
- W4379057002 date "2023-06-01" @default.
- W4379057002 modified "2023-10-06" @default.
- W4379057002 title "Radiomic signatures of meningiomas using the Ki-67 proliferation index as a prognostic marker of clinical outcomes" @default.
- W4379057002 doi "https://doi.org/10.3171/2023.3.focus2337" @default.
- W4379057002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37552657" @default.
- W4379057002 hasPublicationYear "2023" @default.
- W4379057002 type Work @default.
- W4379057002 citedByCount "0" @default.
- W4379057002 crossrefType "journal-article" @default.
- W4379057002 hasAuthorship W4379057002A5000168473 @default.
- W4379057002 hasAuthorship W4379057002A5008406273 @default.
- W4379057002 hasAuthorship W4379057002A5014352993 @default.
- W4379057002 hasAuthorship W4379057002A5023589639 @default.
- W4379057002 hasAuthorship W4379057002A5034999945 @default.
- W4379057002 hasAuthorship W4379057002A5045143686 @default.
- W4379057002 hasAuthorship W4379057002A5047276743 @default.
- W4379057002 hasAuthorship W4379057002A5048854366 @default.
- W4379057002 hasAuthorship W4379057002A5059909608 @default.
- W4379057002 hasAuthorship W4379057002A5061164194 @default.
- W4379057002 hasAuthorship W4379057002A5064222905 @default.
- W4379057002 hasAuthorship W4379057002A5065419518 @default.
- W4379057002 hasAuthorship W4379057002A5067700684 @default.
- W4379057002 hasAuthorship W4379057002A5069639187 @default.
- W4379057002 hasAuthorship W4379057002A5082053300 @default.
- W4379057002 hasAuthorship W4379057002A5082429442 @default.
- W4379057002 hasAuthorship W4379057002A5091313692 @default.
- W4379057002 hasAuthorship W4379057002A5091351888 @default.
- W4379057002 hasBestOaLocation W43790570021 @default.
- W4379057002 hasConcept C121332964 @default.
- W4379057002 hasConcept C126322002 @default.
- W4379057002 hasConcept C126838900 @default.
- W4379057002 hasConcept C143998085 @default.
- W4379057002 hasConcept C204232928 @default.
- W4379057002 hasConcept C2777751288 @default.
- W4379057002 hasConcept C2778217198 @default.
- W4379057002 hasConcept C2779160599 @default.
- W4379057002 hasConcept C50382708 @default.
- W4379057002 hasConcept C62520636 @default.
- W4379057002 hasConcept C71924100 @default.
- W4379057002 hasConceptScore W4379057002C121332964 @default.
- W4379057002 hasConceptScore W4379057002C126322002 @default.
- W4379057002 hasConceptScore W4379057002C126838900 @default.
- W4379057002 hasConceptScore W4379057002C143998085 @default.
- W4379057002 hasConceptScore W4379057002C204232928 @default.
- W4379057002 hasConceptScore W4379057002C2777751288 @default.
- W4379057002 hasConceptScore W4379057002C2778217198 @default.
- W4379057002 hasConceptScore W4379057002C2779160599 @default.
- W4379057002 hasConceptScore W4379057002C50382708 @default.
- W4379057002 hasConceptScore W4379057002C62520636 @default.
- W4379057002 hasConceptScore W4379057002C71924100 @default.
- W4379057002 hasIssue "6" @default.
- W4379057002 hasLocation W43790570021 @default.
- W4379057002 hasLocation W43790570022 @default.
- W4379057002 hasOpenAccess W4379057002 @default.
- W4379057002 hasPrimaryLocation W43790570021 @default.
- W4379057002 hasRelatedWork W1992938790 @default.
- W4379057002 hasRelatedWork W2017609140 @default.
- W4379057002 hasRelatedWork W2049214470 @default.
- W4379057002 hasRelatedWork W2361702261 @default.
- W4379057002 hasRelatedWork W2367390038 @default.
- W4379057002 hasRelatedWork W2369115244 @default.
- W4379057002 hasRelatedWork W2386939368 @default.
- W4379057002 hasRelatedWork W2435756822 @default.
- W4379057002 hasRelatedWork W4366299332 @default.
- W4379057002 hasRelatedWork W2949767241 @default.
- W4379057002 hasVolume "54" @default.
- W4379057002 isParatext "false" @default.
- W4379057002 isRetracted "false" @default.
- W4379057002 workType "article" @default.