Matches in SemOpenAlex for { <https://semopenalex.org/work/W4379091939> ?p ?o ?g. }
- W4379091939 abstract "Abstract Variational quantum algorithms are the leading candidate for advantage on near-term quantum hardware. When training a parametrized quantum circuit in this setting to solve a specific problem, the choice of ansatz is one of the most important factors that determines the trainability and performance of the algorithm. In quantum machine learning (QML), however, the literature on ansatzes that are motivated by the training data structure is scarce. In this work, we introduce an ansatz for learning tasks on weighted graphs that respects an important graph symmetry, namely equivariance under node permutations. We evaluate the performance of this ansatz on a complex learning task, namely neural combinatorial optimization, where a machine learning model is used to learn a heuristic for a combinatorial optimization problem. We analytically and numerically study the performance of our model, and our results strengthen the notion that symmetry-preserving ansatzes are a key to success in QML." @default.
- W4379091939 created "2023-06-03" @default.
- W4379091939 creator A5046808924 @default.
- W4379091939 creator A5055207858 @default.
- W4379091939 creator A5062646838 @default.
- W4379091939 creator A5069043772 @default.
- W4379091939 creator A5069500383 @default.
- W4379091939 date "2023-05-13" @default.
- W4379091939 modified "2023-10-09" @default.
- W4379091939 title "Equivariant quantum circuits for learning on weighted graphs" @default.
- W4379091939 cites W2039122980 @default.
- W4379091939 cites W2145339207 @default.
- W4379091939 cites W2150243355 @default.
- W4379091939 cites W2161685427 @default.
- W4379091939 cites W2257979135 @default.
- W4379091939 cites W2755255888 @default.
- W4379091939 cites W2794444783 @default.
- W4379091939 cites W2896712926 @default.
- W4379091939 cites W2914721378 @default.
- W4379091939 cites W2954369586 @default.
- W4379091939 cites W2980835754 @default.
- W4379091939 cites W2987541919 @default.
- W4379091939 cites W3045093737 @default.
- W4379091939 cites W3047863327 @default.
- W4379091939 cites W3093944484 @default.
- W4379091939 cites W3101122608 @default.
- W4379091939 cites W3105259638 @default.
- W4379091939 cites W3110791412 @default.
- W4379091939 cites W3119774682 @default.
- W4379091939 cites W3136233239 @default.
- W4379091939 cites W3141755656 @default.
- W4379091939 cites W3152893301 @default.
- W4379091939 cites W3156499817 @default.
- W4379091939 cites W3158433122 @default.
- W4379091939 cites W3166275705 @default.
- W4379091939 cites W3177828909 @default.
- W4379091939 cites W3183475563 @default.
- W4379091939 cites W3188522200 @default.
- W4379091939 cites W3189250281 @default.
- W4379091939 cites W3198407528 @default.
- W4379091939 cites W3199816848 @default.
- W4379091939 cites W3204404766 @default.
- W4379091939 cites W3206034163 @default.
- W4379091939 cites W3209107739 @default.
- W4379091939 cites W4210257598 @default.
- W4379091939 cites W4229000948 @default.
- W4379091939 cites W4321221899 @default.
- W4379091939 cites W795275065 @default.
- W4379091939 doi "https://doi.org/10.1038/s41534-023-00710-y" @default.
- W4379091939 hasPublicationYear "2023" @default.
- W4379091939 type Work @default.
- W4379091939 citedByCount "2" @default.
- W4379091939 countsByYear W43790919392023 @default.
- W4379091939 crossrefType "journal-article" @default.
- W4379091939 hasAuthorship W4379091939A5046808924 @default.
- W4379091939 hasAuthorship W4379091939A5055207858 @default.
- W4379091939 hasAuthorship W4379091939A5062646838 @default.
- W4379091939 hasAuthorship W4379091939A5069043772 @default.
- W4379091939 hasAuthorship W4379091939A5069500383 @default.
- W4379091939 hasBestOaLocation W43790919391 @default.
- W4379091939 hasConcept C121332964 @default.
- W4379091939 hasConcept C130979935 @default.
- W4379091939 hasConcept C136119220 @default.
- W4379091939 hasConcept C137019171 @default.
- W4379091939 hasConcept C154945302 @default.
- W4379091939 hasConcept C173801870 @default.
- W4379091939 hasConcept C186468114 @default.
- W4379091939 hasConcept C202444582 @default.
- W4379091939 hasConcept C2524010 @default.
- W4379091939 hasConcept C2779094486 @default.
- W4379091939 hasConcept C2779886137 @default.
- W4379091939 hasConcept C33923547 @default.
- W4379091939 hasConcept C37914503 @default.
- W4379091939 hasConcept C41008148 @default.
- W4379091939 hasConcept C50644808 @default.
- W4379091939 hasConcept C58053490 @default.
- W4379091939 hasConcept C62520636 @default.
- W4379091939 hasConcept C62641251 @default.
- W4379091939 hasConcept C80444323 @default.
- W4379091939 hasConcept C84114770 @default.
- W4379091939 hasConceptScore W4379091939C121332964 @default.
- W4379091939 hasConceptScore W4379091939C130979935 @default.
- W4379091939 hasConceptScore W4379091939C136119220 @default.
- W4379091939 hasConceptScore W4379091939C137019171 @default.
- W4379091939 hasConceptScore W4379091939C154945302 @default.
- W4379091939 hasConceptScore W4379091939C173801870 @default.
- W4379091939 hasConceptScore W4379091939C186468114 @default.
- W4379091939 hasConceptScore W4379091939C202444582 @default.
- W4379091939 hasConceptScore W4379091939C2524010 @default.
- W4379091939 hasConceptScore W4379091939C2779094486 @default.
- W4379091939 hasConceptScore W4379091939C2779886137 @default.
- W4379091939 hasConceptScore W4379091939C33923547 @default.
- W4379091939 hasConceptScore W4379091939C37914503 @default.
- W4379091939 hasConceptScore W4379091939C41008148 @default.
- W4379091939 hasConceptScore W4379091939C50644808 @default.
- W4379091939 hasConceptScore W4379091939C58053490 @default.
- W4379091939 hasConceptScore W4379091939C62520636 @default.
- W4379091939 hasConceptScore W4379091939C62641251 @default.
- W4379091939 hasConceptScore W4379091939C80444323 @default.
- W4379091939 hasConceptScore W4379091939C84114770 @default.